Diazepam ve baklofenin fare ince ve kalın bağırsaklarının in vitro kasılımları üzerine etkileri

Bu araştırmada, diazepam ve baklofenin farelerde in vitro ince ve kalın bağırsak düz kas kasılımları üzerine etkileri incelenmiştir. Çalışmada 80–100 gram ağırlığında 14 adet fareden elde edilen ince ve kalın bağırsak parçaları, içerisinde “Tyrode” çözeltisi bulunan izole organ banyosuna yerleştirildi. İlk önce bütün dokularda asetilkolinin (ACh) etkili dozunun tespiti için çeşitli konsantrasyonlarda ACh ($10^ {-6}M, 3x10^ {- 6}M, 10^ {-5}M, 3x10^ {-5}M, 10^ {-4}M$) organların bulunduğu ortama sırasıyla katılarak etkili doz tespit edildi. Elde edilen ACh‟nin etkili dozunun yalnız, diazepam ($10^ {-6}M, 10^ {-5}M, 10^ {-4}M$) ve baklofenin ($10^ {-5}M, 10^ {-4}M, 10^ {-3}M$) çeşitli konsantrasyonlarının varlığında denenmesiyle oluşan cevaplar incelendi. İnce ve kalın bağırsak düz kaslarında en büyük cevapların oluştuğu 3x10-5M‟lık ACh derişimi bütün segmentler için etkili konsantrasyon olarak tespit edildi. Diazepamın en düşük konsantrasyonu ($10^ {-6} M$) hariç diğer derişimlerinin ($10^ {-5} M$, $10^ {-4} M$) varlığında elde edilen amplitüt değerlerinin azaldığı, latent sürelerinin ise uzadığı tespit edildi. Bu durum, fare ince ve kalın bağırsak düz kas kasılımlarını diazepamın ancak artan konsantrasyonlarına bağlı bir şekilde baskılayabildiğini gösterdi. Baklofenin ise yine en yoğun derişimi ($10^ {-3} M$) hariç diğer iki derişiminde ($10^ {-4} M$, $10^ {-3} M$) ACh‟nin yalnız denenmesine göre bütün dokuların hem latent sürelerde hem de amplitütlerinde önemli farklılıklar oluşturmadığı gözlendi. Sonuç olarak in vitro koşullarda farelerde ince ve kalın bağırsak düz kasında Ach kaynaklı kasılımları diazepamın inhibe edici etkisinin baklofene oranla daha güçlü olduğu görüldü.

The effects of diazepam and baclofen on the in vitro contraction of small and large intestines in mice

In this study, the effects of diazepam and baclofen on the in vitro smooth muscle contractions of small and large intestines of mice were examined. In the study, the tissues of small and large intestines of 14 mice weighting 80-100 g were placed into the isolated organ bath including “Tyrode” solution. Firstly, in order to determine the effective dosage of acetylcholine (Ach) on all tissues, the effective dose determined by putting various concentrations of Ach ($10^ {-6}M, 3x10^ {- 6}M, 10^ {-5}M, 3x10^ {-5}M, 10^ {-4}M$) into the medium including organs respectively. The responses of the application of the effective dose of Ach alone in the presence of various concentrations of diazepam ($10^ {-6}M, 10^ {-5}M, 10^ {-4}M$) and baclofen baklofenin ($10^ {-5}M, 10^ {-4}M, 10^ {-3}M$) were examined. 3x $10^ {-5} M$ Ach concentration having the biggest responses on the smooth muscles of small and large intestine determined as the effective concentration for all segments. Except the lowest concentration of diazepam ($10^ {-6} M$), the amplitude values obtained with the other concentrations ($10^ {-5} M$, $10^ {-4} M$) decreased; on the other hand, latent duration increased. This situation showed that diazepam could only prevent the smooth muscle contractions of small and large intestines of mice due to its increasing concentrations. On the other hand, it observed that there wasn‟t any difference in both latent duration and amplitude values of all tissues for both concentration of baclofen ($10^ {-4} M$, $10^ {-3} M$) except the highest concentration of baclofen ($10^ {-3} M$) compared to the application of Ach alone. As a conclusion, it observed that diazepam had stronger inhibiting effect for Ach –induced contractions in the smooth muscle of small and large intestines of mice in vitro conditions compared to baclofen.

___

  • Addolorato, G., Leggio, L., Agabio, R., Colombo, G., Gasbarrini, G., 2006. Baclofen: a new drug for the treatment of alcohol dependence. Int. J. Clin. Pract. 60, 1003–1008.
  • Akıncı, MK., Schonfiel, PR., 1999. Widespread expression of GABAA receptor subunits in peripheral tissues. Neurosci. Res. 35, 145–153.
  • Ayyat, FM., Lloyd, LK., Kuhlemeier, KV., 1984. Effect of skeletal muscle relaxants on bladder smooth muscle. J. Urol. 132, 372-375.
  • Bayer, S., Crenner, F., Aunis, D., Angel, F., 2002. Effects of GABA on circular smooth muscle spontaneous activities of rat distal colon. Life Sci. 71, 911–925.
  • Carai, MA., Agabio, R., Lobina, C., Reali, R., Vacca, G., Colombo, G., Gessa, GL., 2002. GABAB.-receptor mediation of the inhibitory effect of gamma-hydroxybutyric acid on intestinal motility in mice. Life Sci. 70, 3059–3067.
  • Castelli, MP., Ingianni, A., Stefanini, E., Gessa, GL., 1999. Distribution of GABAB receptor mRNAs in the rat brain and peripheral organs. Life Sci. 64, 1321–1328.
  • Chandler, ML., Guilford, WG., Lawoko, CR., Whittem, T., 1999. Gastric emptying and intestinal transit times of radiopaque markers in cats fed a high-fiber diet with and without low-dose intravenous diazepam Vet. Radiol. Ultrasound. 401, 3–8.
  • Clanachan, AS., Marshall, RJ., 1980. Potentiation of effects of adenosine on isolated cardiac and smooth muscle by diazepam. Br. J. Pharmacol. 71, 459–466.
  • Ehlert, FJ., Sawyer GW., Esqueda EE., 1999. Contractile role of M2 and M3 muscarinic resptors in gastrointestinal smooth muscle. Life Sci. 64 (6/7), 387–394.
  • Fareashi, S., Ikeda, K., Miyata, K., Yamada, T., Honda, K., 2001. A method for measurement of muscarinic receptor-mediated responses in dissociated single colon longitudinal smooth muscle cells. J. Pharm. Toxicol. Methods, 45, 199–205.
  • Gentilini, G., Franchi-Micheli, S., Pantalone, D., 1992. GABAB receptormediated mechanisms in human intestine in vitro. Eur. J. Pharmacol. 217, 9–14.
  • Giotti, A., Luzzi, S., Spagnesi, S., Ziletti, L., 1983. GABAA and GABAB receptor mediated effects in guinea-pig ileum. Br. J. Pharmacol., 78, 469-478.
  • Grider, JR., Makhlouf, GM., 1992. Enteric GABA, mode of action and role in the regulation of the peristaltic reflex. Am. J. Physiol. 262, 690–694.
  • Ishii, K., Kano, M., Akutagawa, M., Makino, M., Tanaka, T., Ando, J., 1982. Effects of flurazepam and diazepam in isolated guineapig taenia coli and longitudinal muscle. Eur. J. Pharm., 83, 329-333.
  • Kerr, DIB., Krantis, A., 1983. Uptake and stimulusevoked release of [3H] gamma-aminobutyric acid by myenteric nerves of guinea-pig. Br. J. Pharmacol. 78, 271–276.
  • Kubota, K., Sugaya, K., Sunagane, N., Matsuda, I., Uruno, T., 1985. Cholecystokinin antagonism by benzodiazepines in the contractile response of the isolated guinea-pig gallbladder. Eur. J. Pharm., 110, 225-231.
  • Mars, T.C., 2004. The role of diazepam in the treatment of nerve agent poisoning in a civilian population. Toxicol. Rev. 23, 145–157.
  • Martinez, J., Fargeas, MJ., Bueno, L., 1992. Gastrointestinal motor alterations induced by precipitated benzodiazepine withdrawal in rats. J. Pharmacol. Exp. Ther. 2603, 1067–172.
  • Meldrum, LA., Bojarski, JC., Calam, J., 1986. Effects of benzodiazepines on responses of guinea-pig ileum and gall-bladder and rat pancreatic acini to cholecystokinin. Eur. J. Pharm. 123, 427–432.
  • Nutt, D., 2006. GABAA receptors: subtypes, regional distribution, and function. J Clin Sleep Med. 2, S7-S11.
  • Ong, J., Kerr, DIB., 1983. GABAA and GABAB receptor-mediated modification of intestinal motility. Eur. J. Pharmacol. 86, 9–17.
  • Sert, M., Pişkin, İ., 2004. Diazepam ve baklofenin kobaylarda sidik kesesi düz kası üzerine etkileri. Ankara Üniv. Vet. Fak. Derg. 51, 189–193.
  • Tonini, M., Crema, A., Frigo, GM., Rizzi, CA., Manzo, L., Candura, SM., Onori, L., 1989. An in vitro study of the relationship between GABA receptor function and propulsive motility in the distal colon of the rabbit. Br. J. Pharmacol. 98, 1109–1118.
  • Zhou, X., Galligan, J.J., 2000. GABA(A) receptors on calbindin-immunoreactive myenteric neurons of guinea pig intestine. J. Auton. Nerv. Syst. 78, 122–135.