Paraben Sübstitüe Monospiro-Siklotrifosfazen Bileşikleri: Sentezi ve Karakterizasyonu

Parabenler, insanlar için düşük toksisite potansiyelleri ve etkili antibakteriyel ve antifungal aktiviteleri nedeniyle potansiyel biyolojik olarak aktif bileşikler arasındadır. Siklotrifosfazenlerin özellikleri bağlı oldukları yan grupların özelliklerine göre etkinliklerini arttırır. Siklotrifosfazenlerin göstermiş oldukları özellikler, yan gruplara bağlı olarak değişir ve etkinlikleri artar. Bu nedenle bilim adamları, özellikle hedef molekülleri tasarlamak için bir platform olarak kullanırlar. Bu çalışmada, yeni tip paraben ikameli monospiro-siklotrifosfazen bileşikleri (5-7) başarıyla sentezlendi ve bu bileşikler MALDI-TOF kütlesi, 1H, 31P ve 13C NMR spektroskopi teknikleri ile tamamen karakterize edildi. Bileşik 5'in moleküler yapısı da tek kristal X-ışını kristallografisi ile belirlendi.
Anahtar Kelimeler:

Siklotrifosfazen, Paraben, NMR, X-Ray

Paraben Substituted Monospiro-Cyclotriphosphazene Compounds: Synthesis and Characterization

Parabens are among the potential biologically active compounds due to their low toxicity potential for humans and their effective antibacterial and antifungal activity. The properties of cyclotriphosphazenes increase their efficiency according to the properties of the side groups to which they are attached. For this reason, scientists use it as a platform to design target molecules in particular. In this study, new types paraben substituted monospiro-cyclotriphosphazene compounds (5-7) were successfully synthesized and these compounds were fully characterized by MALDI-TOF mass, 1H, 31P and 13C spectroscopy techniques. The molecular structure of compound 5 was also determined by single crystal X-ray crystallography.

___

  • [1] Katakam, L. N. R., Ettaboina, S. K. and Dongala, T., “A simple and rapid HPLC method for determination of parabens and their degradation products in pharmaceutical dosage forms”, Biomedical Chromatography, (2021), 35, 10, e5152.
  • [2] Matwiejczuk, N., Galicka, A. and Brzóska, M. M., ‘‘Review of the safety of application of cosmetic products containing parabens”, Journal of Applied Toxicology, (2020), 40, 1, 176-210.
  • [3] Nguyen, T., Clare, B., Guo, W. and Martinac, B., ‘‘The effects of parabens on the mechanosensitive channels of E. coli”, European Biophysics Journal, (2005), 34, 5, 389-395.
  • [4] Byford, J., Shaw, L., Drew, M., Pope, G., Sauer, M., Darbre, P. D., ‘‘Oestrogenic activity of parabens in MCF7 human breast cancer cells”, The Journal of steroid biochemistry and molecular biology, (2002), 80, 1, 49-60.
  • [5] Darbre, P. D. and Harvey, P. W., ‘‘Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks”, Journal of applied toxicology, (2008), 28, 5, 561-578.
  • [6] Hager, E., Chen, J., and Zhao, L. ‘‘Minireview: Parabens Exposure and Breast Cancer’’ International Journal of Environmental Research and Public Health, (2022),19(3), 1873.
  • [7] Liang, J., Yang, X., Liu, Q. S., Sun, Z., Ren, Z., Wang, X.,, Zhang Q., Ren X., Liu X., Zhou Q., and Jiang G., ‘‘Assessment of Thyroid Endocrine Disruption Effects of Parabens Using In Vivo, In Vitro, and In Silico Approaches’’, Environmental science & technology. (2022), 56, 460−469.
  • [8] Witorsch, R. J. and Thomas, J. A., ‘‘Personal care products and endocrine disruption: a critical review of the literature”, Critical reviews in toxicology, (2010), 40, sup3, 1-30.
  • [9] Allen, C. W., ‘‘Regio-and stereochemical control in substitution reactions of cyclophosphazenes”, Chemical Reviews, (1991), 91, 2, 119-135.
  • [10] Yenilmez Çiftçi, G., Eçik, E. T., Yıldırım, T., Bilgin, K., Şenkuytu, E., Yuksel, F., Uludağ, Y. and Kılıç, A., ‘‘Synthesis and characterization of new cyclotriphosphazene compounds”, Tetrahedron, (2013), 69, 5 1454-1461.
  • [11] Şenkuytu, E., Akbaş, N., Yıldırım, T. and Yenilmez Çiftçi, G., Y., ‘‘Synthesis, characterization and cytotoxic activity studies on cancer cell lines of new paraben-decorated monospiro-cyclotriphosphazenes”, New Journal of Chemistry, (2022), 46(5), 2453–2464.
  • [12] Şenkuytu, E., Akbaş, N., Yıldırım, T. and Yenilmez Çiftçi, G., ‘‘The Bioactive New Type Paraben Decorated Dispiro-Cyclotriphosphaze Compounds: Synthesis, Characterization and Cytotoxic Activity Studies”, Journal of Molecular Structure, (2022), 1255,132438.
  • [13] Yenilmez Çiftçi, G., Bayık, N., Eçik, E. T., Şenkuytu, E., Akşahin, M., and Yıldırım, T. ‘‘Synthesis of the first 2-hydroxyanthraquinone substituted cyclotriphosphazenes and their cytotoxic properties’’ New Journal of Chemistry, (2020), 44(39), 16733-16740.
  • [14] Yenilmez Çiftçi, G., Demir, G., Şenkuytu, E., Eçik, E. T., Aksahin, M., and Yıldırım, T. ‘‘2-Hydroxyanthraquinone substituted cyclotriphosphazenes: Synthesis and cytotoxic activities in cancer cell lines’’ Inorganica Chimica Acta, (2021), 514, 120005.
  • [15] İbişoğlu, H., Erdemir, E., Atilla, D., Ün, Ş. Ş., Topçu, S. and Şeker, M. G., ‘‘Synthesis, characterization and antimicrobial properties of cyclotriphosphazenes bearing benzimidazolyl rings”, Inorganica Chimica Acta, (2020), 509, 119679.
  • [16] Song, S.-C., Lee, S. B., Lee, B. H., Ha, H.-W., Lee, K.-T. and Sohn, Y. S., ‘‘Synthesis and antitumor activity of novel thermosensitive platinum (II)–cyclotriphosphazene conjugates”, Journal of controlled release, (2003), 90, 3, 303-311.
  • [17] Koran, K., Ozkaya, A., Ozen, F., Cil, E. and Arslan, M., ‘‘Synthesis, characterization, and biological evaluation of new oxime-phosphazenes”, Research on Chemical Intermediates, (2013), 39, 3, 1109-1124.
  • [18] Jiménez, J., Laguna, A., Gascón, E., Sanz, J. A., Serrano, J. L., Barberá, J. and Oriol, L., ‘‘New liquid crystalline materials based on two generations of dendronised cyclophosphazenes”, Chemistry–A European Journal, (2012), 18, 52, 16801-16814.
  • [19] Okutan, E., Eserci, H., Şenkuytu, E., ‘‘New perylenebisimide decorated cyclotriphosphazene heavy atom free conjugate as singlet oxygen generator”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (2019), 222, 117232.
  • [20] Cheng, J., Wang, J., Yang, S., Zhang, Q., Huo, S., Zhang, Q., Hu, Y. and Ding, G., ‘‘Benzimidazolyl-substituted cyclotriphosphazene derivative as latent flame-retardant curing agent for one-component epoxy resin system with excellent comprehensive performance”, Composites Part B: Engineering, (2019), 177, 107440.
  • [21] Yenilmez Çiftçi, G., Şenkuytu, E., İncir, S. E., Yuksel, F., Ölçer, Z., Yıldırım, T., Kılıç, A., Uludağ, Y., ‘‘First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor”, Biosensors and Bioelectronics, (2016), 80, 331-338.
  • [22] Yenilmez Çiftçi, G., Şenkuytu, E., İncir, S. E., Eçik, E. T., Zorlu, Y., Ölçer, Z. and Uludağ, Y., ‘‘Characterization of paraben substituted cyclotriphosphazenes, and a DNA interaction study with a real-time electrochemical profiling based biosensor”, Microchimica Acta, (2017), 184, 7, 2307-2315.
  • [23] Şenkuytu, E., Yıldırım, T., Ölçer, Z., Uludağ, Y. and Yenilmez Çiftçi, G., ‘‘DNA interaction analysis of fluorenylidene double bridged cyclotriphosphazene derivatives”, Inorganica Chimica Acta, (2018), 477, 219-226.
  • [24] Yıldırım, T., Bilgin, K., Yenilmez Çiftçi, G., Eçik, E. T., Şenkuytu, E., Uludağ, Y., Tomak, L. and Kılıç, A., ‘‘Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents”, European journal of medicinal chemistry, (2012), 52, 213-220.
  • [25] Kızılkaya, P., Şenkuytu, E., Davarcı, D., Pala, U., Ölçer, Z. and Yenilmez Çiftçi, G., ‘‘Novel paraben derivatives of tetracyclic spermine cyclotriphosphazenes: synthesis, characterization and biosensor based DNA interaction analysis”, New Journal of Chemistry, (2020), 44, 43, 18942-18953.
  • [26] Şenkuytu, E., Kızılkaya, P., Ölçer, Z., Pala, U., Davarcı, D., Zorlu, Y., Erdoğan, H. and Yenilmez Çiftçi, G., ‘‘Electrophoresis and biosensor-based DNA interaction analysis of the first paraben derivatives of spermine-bridged cyclotriphosphazenes”, Inorganic Chemistry, (2020), 59, 4, 2288-2298.
  • [27] Bruker (2007) APEX2, Bruker AXS Inc., Madison, Wisconsin, USA.
  • [28] Bruker (2007) SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.
  • [29] Bruker (2001) SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  • [30] Sheldrick, G. M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallographica Section A, A71, (2015) 3-8.
  • [31] Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallographica C, C71, (2015) 3-8.
  • [32] Bruker, SHELXTL, version 6.14, Bruker AXS Inc., Madison, Wisconsin, USA, 2010.
  • [33] Macrae, C. F.;,Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., Van de Streek, J. Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography, 39 (2006) 453-457