Cu(II) Katkılı 6,7-Dihidroksi-3-(3-klorofenil)kumarin Bileşiğinin Dielektrik Özelliklerinin İncelenmesi

Bu çalışmada, Cu(II) metal iyonlarının farklı mol oranlarında 6,7-dihidroksi-3-(3-klorofenil)kumarin bileşiğinin (DPCl-Kum) dielektrik sabiti, dielektrik kayıp faktörü ve ac iletkenliğinin frekansın bir fonksiyonu olarak incelenmesi amaçlanmıştır. DPCl-Kum için dielektrik ölçümleri, frekansın bir fonksiyonu olarak bir empedans analizörü kullanılarak belirlenmiştir. DPCl-Kum ve kompozitlerinin dielektrik özellikleri, oda sıcaklığında 100 Hz ile 20 kHz arasındaki frekansta ölçülmüş ve birbirleriyle karşılaştırılarak verilmiştir. DPCl-Kum bileşiğindeki polarize olan serbest –OH fonksiyonel gruplarının Cu(II) iyonları ile etkileşimi sonucu polarizasyonun azalmasından dolayı Cu (II) iyonunun artan mol oranlarında dielektrik özelliklerinde de azalma olduğu görüldü. Ayrıca DPCl-Kum ve kompozitlerinin TGA analizleri gerçekleştirildi. Cu(II) oranı arttıkça hem termal kararlılığın arttığı hem de artık miktarlarının arttığı görüldü.

Investigation of Dielectric Properties of Cu(II) Doped 6,7-Dihydroxy-3-(3-chlorophenyl)coumarin Compound

We aimed to investigate the dielectric constant, dielectric loss factor and ac conductivity of 6,7-dihydroxy-3-(3-chlorophenyl)coumarin compound (DPCl-Kum) at different mole ratios of Cu(II) metal ions as a function of frequency. Dielectric measurements for DPCl-Kum were determined using an impedance analyzer as a function of frequency. Dielectric properties of DPCl-Kum and its composites were measured at 25 OC over the frequency from 100 Hz to 20 kHz and given as compared with each other. It was observed that the dielectric properties of the Cu (II) ion decreased with increasing mole ratios due to the decrease in polarization as a result of the interaction of polarized free –OH functional groups with Cu(II) ions in the DPCl-Kum compound. In addition, TGA analyzes of DPCl-Kum and its composites were performed. It was observed that as the Cu(II) ratio increased, both the thermal stability increased and the residual amount increased.

___

  • [1] D. Cao et al., "Coumarin-Based Small-Molecule Fluorescent Chemosensors," Chemical Reviews, vol. 119, no. 18, pp. 10403-10519, 2019/09/25 2019.
  • [2] E. A. Azzopardi et al., "Chromophores in operative surgery: Current practice and rationalized development," Journal of Controlled Release, vol. 249, pp. 123-130, 2017/03/10/ 2017.
  • [3] P. Chinna Ayya Swamy et al., "Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy," Coordination Chemistry Reviews, vol. 411, p. 213233, 2020/05/31/ 2020.
  • [4] Y. Jung, J. Jung, Y. Huh, and D. Kim, " Benzocoumarin-Based Fluorescent Probes for Bioimaging Applications," Journal of Analytical Methods in Chemistry, vol. 2018, p. 5249765, 2018/06/14 2018.
  • [5] A. Vogel, "Darstellung von Benzoesäure aus der Tonka-Bohne und aus den Meliloten - oder Steinklee - Blumen," Annalen der Physik, vol. 64, no. 2, pp. 161-166, 1820.
  • [6] W. H. Perkin, "On the artificial production of coumarin and formation of its homologues," Journal of the Chemical Society, vol. 21, pp. 53-63, 1868.
  • [7] D. Yu, M. Suzuki, L. Xie, S. L. Morris-Natschke, and K.-H. Lee, "Recent progress in the development of coumarin derivatives as potent anti-HIV agents," Medicinal Research Reviews, vol. 23, no. 3, pp. 322-345, 2003.
  • [8] S. Emami and S. Dadashpour, "Current developments of coumarin-based anti-cancer agents in medicinal chemistry," European Journal of Medicinal Chemistry, vol. 102, pp. 611-630, 2015/09/18/ 2015.
  • [9] A. Stefanachi et al., "Design, Synthesis, and Biological Evaluation of Imidazolyl Derivatives of 4,7-Disubstituted Coumarins as Aromatase Inhibitors Selective over 17-α-Hydroxylase/C17−20 Lyase," Journal of Medicinal Chemistry, vol. 54, no. 6, pp. 1613-1625, 2011/03/24 2011.
  • [10] A. P. Dwivedi, S. Kumar, V. Varshney, A. B. Singh, A. K. Srivastava, and D. P. Sahu, "Synthesis and antihyperglycemic activity of novel N-acyl-2-arylethylamines and N-acyl-3-coumarylamines," Bioorganic & Medicinal Chemistry Letters, vol. 18, no. 7, pp. 2301-2305, 2008/04/01/ 2008.
  • [11] C. A. Kontogiorgis and D. J. Hadjipavlou-Litina, "Synthesis and biological evaluation of novel coumarin derivatives with a 7-azomethine linkage," Bioorganic & Medicinal Chemistry Letters, vol. 14, no. 3, pp. 611-614, 2004/02/09/ 2004.
  • [12] M. J. Matos et al., "Structure-Based Optimization of Coumarin hA3 Adenosine Receptor Antagonists," Journal of Medicinal Chemistry, vol. 63, no. 5, pp. 2577-2587, 2020/03/12 2020.
  • [13] J. Breidenbach, U. Bartz, and M. Gütschow, "Coumarin as a structural component of substrates and probes for serine and cysteine proteases," Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1868, no. 9, p. 140445, 2020/09/01/ 2020.
  • [14] S. Feng et al., "Coumarin-Containing Light-Responsive Carboxymethyl Chitosan Micelles as Nanocarriers for Controlled Release of Pesticide," Polymers, vol. 12, no. 10, p. 2268, 2020.
  • [15] Y.-H. Wang, B. Avula, N. P. D. Nanayakkara, J. Zhao, and I. A. Khan, "Cassia Cinnamon as a Source of Coumarin in Cinnamon-Flavored Food and Food Supplements in the United States," Journal of Agricultural and Food Chemistry, vol. 61, no. 18, pp. 4470-4476, 2013/05/08 2013.
  • [16] F. Floc'h, F. Mauger, J. R. Desmurs, and A. Gard, "Coumarin in plants and fruits: implication in perfumery," Perfum. Flavor., vol. 27, no. 2, pp. 32-36, 2002.
  • [17] M. T. Baltazar et al., "A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products," Toxicological Sciences, vol. 176, no. 1, pp. 236-252, 2020.
  • [18] V. Decottignies, G. Filippi, and A. Bruchet, "Characterisation of odour masking agents often used in the solid waste industry for odour abatement," Water Science and Technology, vol. 55, no. 5, pp. 359-364, 2007.
  • [19] F. A. Wan Mohd Nuzul Hakimi Wan Salleh, Phytochemistry and Biological Activities of the Genus Ocotea (Lauraceae): A Review on Recent Research Results (2000-2016). Issue: 5, 2017, pp. 204-218.
  • [20] S. J. Sharma and N. Sekar, "Deep-red/NIR emitting coumarin derivatives - Synthesis, photophysical properties, and biological applications," Dyes and Pigments, vol. 202, p. 110306, 2022/06/01/ 2022.
  • [21] R. H. Vekariya and H. D. Patel, "Recent Advances in the Synthesis of Coumarin Derivatives via Knoevenagel Condensation: A Review," Synthetic Communications, vol. 44, no. 19, pp. 2756-2788, 2014/10/02 2014.
  • [22] M. M. Heravi, S. Khaghaninejad, and M. Mostofi, "Chapter One - Pechmann Reaction in the Synthesis of Coumarin Derivatives," in Advances in Heterocyclic Chemistry, vol. 112, A. R. Katritzky, Ed.: Academic Press, 2014, pp. 1-50.
  • [23] B. Kahveci and E. Menteşe, "Microwave Assisted Synthesis of Coumarins: A Review From 2007 to 2018," Current Microwave Chemistry, vol. 5, no. 3, pp. 162-178, 2018.
  • [24] Ş. N. Karuk Elmas, F. Ozen, K. Koran, I. Yilmaz, A. O. Gorgulu, and S. Erdemir, "Coumarin based highly selective “off-on-off” type novel fluorescent sensor for Cu2+ and S2− in aqueous solution," Journal of fluorescence, vol. 27, no. 2, pp. 463-471, 2017.
  • [25] Priyanka, R. K. Sharma, and D. Katiyar, "Recent Advances in Transition-Metal-Catalyzed Synthesis of Coumarins," (in En), Synthesis, vol. 48, no. 15, pp. 2303-2322, 19.07.2016 2016.
  • [26] F. Özen, S. Tekin, K. Koran, S. Sandal, and A. O. Görgülü, "Synthesis, structural characterization, and in vitro anti-cancer activities of new phenylacrylonitrile derivatives," Applied Biological Chemistry, vol. 59, no. 2, pp. 239-248, 2016/04/01 2016.
  • [27] K. Koran, F. Özen, F. Biryan, K. Demirelli, and A. O. Görgülü, "Eu+ 3-doped chalcone substituted cyclotriphosphazenes: Synthesis, characterizations, thermal and dielectrical properties," Inorganica Chimica Acta, vol. 450, pp. 162-169, 2016.
  • [28] F. Biryan and K. Demirelli, "Copolymerization of benzyl methacrylate and a methacrylate bearing benzophenoxy and hydroxyl side groups: Monomer reactivity ratios, thermal studies and dielectric measurements," Fibers and polymers, vol. 18, no. 9, pp. 1629-1637, 2017.
  • [29] E. Çalışkan, F. Biryan, and K. Koran, "Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi," Türk Doğa ve Fen Dergisi, vol. 10, no. 1, pp. 259-268.
  • [30] K. Koran, "2, 2-(3-(Sübstitüe-florofenil)-1-(4-oksifenil) prop-2-en-1-one)-4, 4, 6, 6-bis [spiro (2', 2"-dioksi-1', 1"-bifenilil] SiklotrifosfazenlerinDielektrik ve Termal Özellikleri," Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 18, no. 2, pp. 458-467.
  • [31] F. Biryan and K. Demirelli, "Characterization, thermal behavior, and electrical measurements of poly[4-(2-bromoisobutyroyl methyl)styrene]," Advances in Polymer Technology, vol. 37, no. 6, pp. 1994-2012, 2018