Bazı Onobrychis Miller Taksonları'nın Yağda Çözünen Vitamin İçeriği

Bu çalışmanın amacı, bazı Onobrychis Miller taksonlarının tohumlarındaki yağda çözünen vitamin içeriğini HPLC kullanarak belirlemektir. Doğal yaşam alanlarından örnekler alındı. Çalışılan malzemeler asetonitril / metanol (75/25 h / h) içinde çözüldü ve HPLC cihazına (Shimadzu, Kyota Japonya) 50 μL enjekte edildi. Bu çalışmadan elde edilen verilere göre Onobrychis hypargyrea, Onobrychis viciifolia, Onobrychis caput-galli, Onobrychis fallax ve Onobrychis oxyodonta var. armena'nın lipitte çözünen vitamin içeriğinin yüksek olduğunu göstermiştir. Bu çalışma Onobrychis oxyodonta var. armena (1777,27 ± 6,24 µg / g), Onobrychis fallax (916,0 ± 4,51 µg / g) Onobrychis hypargyrea (809,7 ± 5,03 µg / g) ve Onobrychis viciifolia (399,7 ± 3,54 µg / g) en yüksek beta karoten içeriğine sahiptir. Ayrıca, Onobrychis caput-galli de yüksek beta karoten içeriğine sahiptir (73,3 ±, 94 µg / g). Öte yandan, Onobrychis fallax'ın en yüksek gamma-tokoferol içeriğine sahip olduğu belirlendi (1401,2 ± 8,76 µg / g). Onobrychis viciifolia (574,9 ± 2,35 µg / g), Onobrychis caput-galli (410,1 ± 4,56 µg / g), Onobrychis oxyodonta var. armena (267,7 ± 3,68 µg / g), Onobrychis podporea (162,5 ± 2,14 µg / g) diğer yüksek gama tokoferol içeriğine sahip taksonlardır. Diğer taraftan bu çalışmada retinol, retinol asetat ve r-tokoferol içerikleri bulunmamakta veya eser miktarda bulunmaktadır.
Anahtar Kelimeler:

Fabaceae, Onobrychis, Vitamin

The Lipide Soluble Vitamin Contents of Some Onobrychis Miller Taxa

The goal of this study is to determine the lipid-soluble vitamin contents in seeds of the some Onobrychis Miller taxa by using HPLC. Samples were collected from the natural habitats. Studied materials were dissolved in acetonitrile/methanol (75/25 v/v) and were injected 50 μL to HPLC instrument (Shimadzu, Kyota Japan). According to data obtained from present study showed that Onobrychis hypargyrea, Onobrychis viciifolia, Onobrychis caput-galli, Onobrychis fallax and Onobrychis oxyodonta var. armena have high lipide-soluble vitamin contents. Present study found that Onobrychis oxyodonta var. armena (1777,27±6,24 µg/g), Onobrychis fallax (916,0±4,51 µg/g) Onobrychis hypargyrea (809,7±5,03 µg/g) and Onobrychis viciifolia (399,7±3,54 µg/g) have highest beta-caroten content. Also, Onobrychis caput-galli has high beta caroten content (73,3±,94 µg/g). on the other hand, it was found that Onobrychis fallax has highest gamma-tocopherol content (1401,2±8,76 µg/g). Onobrychis viciifolia (574,9±2,35 µg/g), Onobrychis caput-galli (410,1±4,56 µg/g), Onobrychis oxyodonta var. armena (267,7±3,68 µg/g), Onobrychis podporea (162,5±2,14 µg/g) werethe other high gamma tocopherol content. Whereas, retinol, retinol acetate and r-tocopherol contents were found absent or trace amounts in the present study.

___

  • Aktoklu E (1995) Türkiye’de yetişen Onobrychis Miller (Fabaceae) türlerinin revizyonu, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Doktora tezi, 135 s.
  • Aktoklu E (2001) Two New Varieties and a New Record in Onobrychis from Turkey. Turk J Bot. 25 (5):359-363.
  • Amarowicz R, Peg, RB (2008) Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 110 (10): 865–878.
  • Arslan E, Ertugrul K (2010) Genetic relationships of the genera Onobrychis, Hedysarum, and Sartoria using seed storage proteins. Turk J Biol 34(1): 67-73.
  • Arslan M (2017) Diversity for vitamin and amino acid content in grass pea (Lathyrussativus L.). Legume Research 40 (5): 803-810.
  • Avcı S, Kaya MD (2013) Seed and germination characteristics of wild Onobrychis taxa in Turkey. Turk J Agric For. 37 (5): 555-560.
  • Bektas E, Kaltalioglu K, Sahin H, Turkmen Z, Kandemir A (2018) Analysis of phenolic compounds, antioxidant and antimicrobial properties of some endemic medicinal plants. International Journal of Secondary Metabolite 5 (2): 75–86.
  • Berman K, Brodaty H (2004) Tocopherol (Vitamin E) in Alzheimer’s Disease and Other Neurodegenerative Disorders. CNS Drugs 18 (12): 807-825.
  • Boschin G, Arnoldi A (2011) Legumes are valuable sources of tocopherols. Food Chemistry 127 (3): 1199–1203.
  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE (2000) Vitamin E (review). Journal of Science and Food Agriculture 80(7): 913–938.
  • Carbonero CH, Mueller-Harvey I, Brown TA, Smith L (2011). Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Genetic Resources: Characterization and Utilization 9(1): 70–85.
  • Cavallarin L, Antoniazzi S, Borreani G, Tabacco E (2005) Effects of wilting and mechanical conditioning on proteolysis in sainfoin (Onobrychis viciifolia Scop.) wilted herbage and silage. J Sci Food Agric 85(4): 831–838.
  • Cho YS, Yeum KJ, Chen CY, Beretta G, Tang G, Krinsky NI, Yoon S, Lee-Kim YC, Blumberg JB, Russell RM (2007) Phytonutrients affecting hydrophilic and lipophilic antioxidant activities in fruits, vegetables and legumes. Journal of the Science of Food and Agriculture 87(5):1096 –1107. Davis PH (1988) Flora of Turkey and The East Aegean Island. Edinburgh University Press. No:10, Edinburgh.
  • Duman H, Vural M (1990) New taxa from south Anatolia. I. Turk J Bot 14(1):45-48.
  • El-Qudah JM (2014) Estimation of Carotenoid Contents of Selected Mediterranean Legumes by HPLC. World Journal of Medical Sciences 10 (1): 89-93.
  • Fernandez-Marin B, Milla R, Martin-Robles N, Arc E, Kranner I, Becerril JM, Garcia-Plazaola I (2014) Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biology 14 (1599): 1-11.
  • Frias MJ, Miranda ML, Doblado R, Vidal-Valverde C (2005) Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. multolupa. Food Chemistry 92(2): 211–220.
  • Hara A, Radin NS (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal.Biochem. 90 (1): 420-426.
  • Hojer A, Adler S, Martinsson K, Jnesen SK, Steinshamn H, Thuen E, Gustavsson AM (2012) Effect of legume–grass silages and a-tocopherol supplementation on fatty acid composition and a-tocopherol, b-carotene and retinol concentrations in organically produced bovine milk. Livestock Science 148(3): 268–281.
  • Kappus H, Diplock AT (1992) Tolerance and safety of vitamin E: a toxicological position report. Free Radic Biol Med 13(1): 55–74.
  • Karakoca K, Asan-Ozusaglam M, Çakmak YS, Teksen M (2015) Phenolic compounds, biological and antioxidant activities of Onobrychis armena Boiss. & Huet flower and root extracts. Chiang Mai University Journal of Natural of Sciences 42(2): 376– 392.
  • Karamian R, Asadbegy M (2016) Antioxidant activity, total phenolic and flavonoid contents of three Onobrychis species from Iran. Journal of Pharmaceutical Sciences 22(2): 112–119.
  • Kaveh A, Kazempour-Osaloo S, Amirahmadi A, Maassoumi A, Schneeweiss GM (2019) Systematics of Onobrychis sect. Heliobrychis (Fabaceae): morphology and molecular phylogeny. Plant Systematics and Evolution 305(1): 33–48.
  • McDowell LR (2000) Vitamins in animal and human nutrition. Iowa State University Press:Ames, Iowa, USA.
  • Mamatha BS, Sageetha RK, Baskaran V (2011) Provitamin-A and xanthophyll carotenoids in vegetables and food grains of nutritional and medicinal importance. International Journal of Food Science and Technology 46(4): 315–323.
  • Monge-Rojas R, Campos H (2011) Tocopherol and carotenoid content of foods commonly consumed in Costa Rica. Journal of Food Composition and Analysis 24(2): 202–216.
  • Nadeau E, Lindqvist H, Jnesen SK, Nilsdotter N, Gustavsson A (2013) Variations in α-tocopherol and β-carotene concentrations in forage legumes and grasses harvested at different sites and maturity stages. In: Proceedings of the 22nd International Grassland Congress. pp 643-646.
  • Oboh G (2006) Antioxidant properties of some commonly consumed and under-utilized tropical legumes. European Food Research Technology 224(1): 61–65.
  • Ozaslan Parlak A, Parlak M (2008) Effect of salinity in irrigation water on some plant development parameters of sainfoin (Onobrychis viciifolia Scop.) and soil salinity. Tarım Bilim Dergisi 14(4): 320–325.
  • Pavlova DK, Manova VI (2000) Pollen morphology of the genera Onobrychis and Hedysarum (Hedysarea, Fabaceae) in Bulgaria. Ann Bot Fenn 37(3): 207–217.
  • Ranjbar M, Karamian VE (2010) Onobrychis bakuensis (Fabaceae), a new species from Azerbaijan. Ann. Bot. Fennici 47(3): 233-236.
  • Sahin A, Emre I, Yilmaz O, Genc H, Karatepe M (2009) Vitamin and fatty acid contents in seeds of some taxa belonging to genus Lathyrus L. growing in Turkey. Acta Botanica Gallica 156 (3): 331-339.
  • Sanchez-Machado DI, Lopez-Hernandez J, Paseiro-Losado P (2002) High-performance liquid chromatographic determination of a-tocopherol in macroalgae. Journal of Chromatography A 976(1): 277–284.
  • Wyatt CJ, Carballido SP, Mendez RO (1998) α- and γ-Tocopherol Content of Selected Foods in the Mexican Diet: Effect of Cooking Losses. J. Agric. Food Chem. 46(11): 4657−4661.
  • Yılmaz O, Keser S, Tuzcu M, Cetintas B (2007) Resveratrol (trans-3,4’,5-trihydoxystilbene) decreases lipid peroxidation level and protects antioxidant capacity in sera and erytrocytes of old female Wistar rats induced by the kidney carcinogen potassium bromate. Envir. Toxicol. Pharmacol. 24(2): 79-85.
  • Yildiz B, Ciplak B, Aktoklu E (1999) Preliminary phylogeny of sections of genus Onobrychis Miller (Fabaceae) with references of fruit morphology. Isr. J. Plant Sci. 47(4): 269-282.
  • Yildiz M, Ekiz H (2014) The effect of sodium hypochlorite solutions on in vitro seedling growth and regeneration capacity of sainfoin (Onobrychis viciifolia Scop.) hypocotyl explants. Can. J. Plant Sci. 94(7): 1161-1164.