Türk Venöz Trombozlu Hastalarda Yüksek FVIII Düzeyi ile F8 Geninin 3' UTR Varyasyonları Arasındaki İlişki

Amaç: Venöz Tromboz (VT), genetik ve çevresel faktörlerin neden olduğu önemli bir tıbbi hastalıktır. Bu çalışmada, yüksek FVIII plazma seviyelerine sahip 30 hastada ve normal FVIII plazma seviyelerine sahip 30 sağlıklı bireyde Faktör 8 geninin 3' transle edilmeyen bölgesindeki (UTR) dizi varyantları araştırıldı. Materyal ve Metot: Statik Zamanlama Analiz Kiti kullanılarak kan örneklerinde FVIII proteininin plazma seviyeleri ölçüldü. F8 geninin 3' UTR bölgesi, 6 primer çifti kullanılarak PCR ile çoğaltıldı. Dizi varyantlarının belirlenmesi için tek zincirli konformasyon analizi (SSCA) ve DNA dizi analizi yapıldı. Bulgular: FVIII protein düzeyi hastalarda 200 ± 64 IU/dl iken kontrollerde 120 ± 32 IU/dl olarak tespit edildi. F8 geninin 3' UTR'sinde bazı bireylerin farklı SSCA paternleri ve F8 geninin rs1050705 nükleotid değişikliği gözlendi. Bu nedenle, F8 geninin 3' UTR'sindeki dizi varyantları ile yüksek FVIII seviyeleri arasında anlamlı bir ilişki bulamadık. Sonuç: VT, F8 geninin 3' UTR'sindeki dizi varyantı ile ilişkili görünmemektedir, ancak küçük ölçekli çalışmalar, venöz tromboz gibi karmaşık bozuklukları aydınlatmak için genlerin 3' UTR bölgelerine yönelik çalışmalara dikkat çekecektir.

Relationship Between Elevated FVIII Level and 3' UTR Variations of F8 Gene in Turkish Patients with Venous Thrombosis

Objective: Venous Thrombosis (VT) is an important medical disorder caused by genetic and environmental factors. This study investigated the sequence variants in the 3' untranslated region (UTR) of Factor 8 gene in 30 patients with high FVIII plasma levels and 30 healthy individuals with normal FVIII plasma levels. Materials and Methods: The plasma levels of FVIII protein were measured in blood samples using the Static Timing Analyze Kit. The 3' UTR region of F8 gene was amplified by PCR using 6 primers pairs. Single strand conformation analysis (SSCA) and DNA sequencing analysis were carried out for determination of the sequence variants. Results: While the FVIII protein level was 200 ± 64 IU / dl in patients, it was detected as 120 ± 32 IU / dl in controls. In the 3 'UTR of the F8 gene were observed different SSCA patterns of some individuals and nucleotide change rs1050705 of the F8 gene. Therefore, we did not find a significant relationship between sequence variants in 3' UTR of F8 gene and elevated FVIII levels. Conclusions: VT does not seem to be associated with the sequence variant in 3' UTR of the F8 gene but small-scale studies will draw attention to studies on the 3' UTR regions of the genes to elucidate complex disorders such as venous thrombosis.

___

  • 1. Cohen AT, Agnelli G, Anderson FA, Arcelus JI, Bergqvist D, Brecht JG, et al. Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb Haemost 2007;98:756–764.
  • 2. Schambeck CM, Hinney K, Haubitz I, Taleghani BM, Wahler D, Keller F. Familial Clustering of High Factor VIII Levels in Patients With Venous Thromboembolism. Arterioscler Thromb Vasc Biol 2001;21:289-292.
  • 3. Bank I, Libourel EJ, Middeldorp S, Hamulyak K, Van Pampus ECM, Koopman et al. Elevated levels of FVIII:C within families are associated with an increased risk for venous and arterial thrombosis. J Thromb Haemost 2005;3(1):79–84
  • 4. Jenkins PV, Rawley O, Smith OP, O’Donnell J. Elevated factor VIII levels and risk of venous thrombosis. Br J Haematol 2012;157:653–663
  • 5. Kamphuisen PW, Eikenboom JCJ, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol 2001;21(5):731-738.
  • 6. Martinelli I, Primignani1 M, Aghemo A, Reati1 R, Bucciarelli P, Fabris F, et al. High levels of factor VIII and risk of extra-hepatic portal vein obstruction. J Hepatol 2009;50:916–922
  • 7. Weiss HJ, Hoyer LW. Von Willebrand factor: dissociation from antihemophilic factor procoagulant activity. Science 1973;182(117):1149-1151.
  • 8. Wise RJ, Dorner AJ, Krane M, Pittman DD, Kaufman RJ. The role of von Willebrand factor multimers and propeptide cleavage in the binding and stabilization of factor VIII. J Biol Chem 1991;266(32):21948-21955.
  • 9. Senis YA, Richardson M, Tinlin S, Maurice DH, Giles AR. Changes in the pattern of distribution of von Willebrand factor in rat aortic endothelial cells following thrombin generation in vivo. Br J Haematol 1996;93(1):195-203.
  • 10. Galbusera M, Zoja C, Donadelli R, Paris S, Morigi M, Benigni A, et al. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood 1997;90(4):1558-1564.
  • 11. Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ Jr, Montgomery RR. The effect of ABO blood group on the diagnosisof von Willebrand disease. Blood 1987;69(6):1691-1695.
  • 12. Orstavik K.H, Magnus P, Reisner H, Berg K, Graham J.B, Nance W. Factor VIII and factor IX in a twin population: evidence for a major effect of ABO locus on factor VIII level. American Journal of Human Genetics 1985;37(1):89-101.
  • 13. Ay M, Dolek B, Erdem G, Devecioglu Ö, Gozukirmizi N. Is There Any Correlation Between The Elevated Plasma Levels and Gene Variations of Factor VIII in Turkish Thrombosis Patients? Clin Appl Thromb Hemost 2011;17(1):46-50.
  • 14. Campos M, Buchanan A, Yu F, Barbalic M, Xiao Y, Chambless LE, et al. Influence of single nucleotide polymorphisms in factor VIII and von Willebrand factor genes on plasma factor VIII activity: the ARIC Study. Blood 2012;119:1929- 1934.
  • 15. Zang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogens and tumor suppressors. Dev Biol 2007;302(1):1-12.
  • 16. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005;33(4):1290-1297.
  • 17. Xu P, Guo M, Hay BA. MicroRNAs and the regulation of cell death. Trends Genet 2004;20(12):617-624.
  • 18. Karp X, Ambros V. Encountering MicroRNAs in Cell Fate Signaling. Science 2005;310(5752):1288-1289.
  • 19. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med 2006;12(12):580-587.
  • 20. Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 2011;157:163–79
  • 21. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116(2):281–297
  • 22. Sheffield V, Beck J, Kwitek AE, Sandstrom DW, Stone EM. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 1993;16(2):325-332.
  • 23. Viel KR, Machiah DK, Warren DM, Khachidze M, Buil A, Fernstrom K, et al. A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels. Blood 2007;109(9):3713-3724.
  • 24. Berger M, Mattheisen M, Kulle B, Schmidt H, Oldenburg J, Bickeböller H, et al. High factor VIII levels in venous thromboembolism show linkage to imprinted loci on chromosomes 5 and 11. Blood 2005;105(2):638-644.
  • 25. Dölek B, Eraslan S, Eroğlu S, Kesim BE, Ulutin T, Yalçiner A, et al.. Molecular analysis of factor V Leiden, factor V Hong Kong, factor II G20210A, methylenetetrahydrofolate reductase C677T, and A1298C mutations related to Turkish thrombosis patients. Clin Appl Thromb Hemost 2007;13(4):435-438.
  • 26. Bittar LF, Siqueira LH, Orsi FA, De Paula EV, Annichino-Bizzacchi JM. Genetic variations in sites of affinity between FVIII and LRP1 are not associated with high FVIII levels in venous thromboembolism. Sci Rep 2015;5:9246
  • 27. Mansvelt EP, Laffan M, McVey JH, Tuddenham EG. Analysis of the F8 gene in individuals with high plasma factor VIII: C levels and associated venous thrombosis. Thromb Haemost 1998;80:561–565.
  • 28. Bafunno V, Santacroce R, Chetta M, Peyvandi F, Sessa F, Chinni E, et al. Polymorphic miRNA-mediated gene contribution to inhibitor development in haemophilia A. Haemophilia 2012;18:1003–1007
  • 29. Bandiera S, Hatem E, Lyonnet S, Henrion-Caude A. microRNAs in diseases: from candidateto modifier genes. Clin Genet 2010;77:306–313
  • 30. Garcia-Casado Z, Guerrero-Zotano A, Llombart-Cussac A, Calatrava A, Fernandez-Serra A, Ruiz-Simon A, et al. Polymorphism at the 3’-UTR region of the aromatase gene defines a subgroup of postmenopausal breast cancer patients with poor response to neoadjuvant letrozole. BMC Cancer 2010;10:36
  • 31. Vormittag R, Funk M, Mannhalter C, Schönauer V, Vukovich T, Minar E, et al. C-reactive protein 3' UTR +1444C>T polymorphism in patients with spontaneous venous thromboembolism. Atherosclerosis 2006;188(2):406-411
  • 32. Vossen CY, van Hylckama Vlieg A, Teruel-Montoya R, Salloum-Asfar S, de Haan H, Corral J, et al. Identification of coagulation gene 3'UTR variants that are potentially regulated by microRNAs. Br J Haematology 2017;177(5):782-790.
  • 33. Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends in Genetics 2008;24:489–497.