Medulla Spinalis Yaralanmalarında Nörorejen İskele Uygulamaları

Medulla spinalis duyu ve motor bilgilerin beyin ile çevresel sinir sistemi arasındaki iletişimini sağlayan merkezi sinir sistemine ait bir oluşumdur. Spinal kord yaralanmalarında bu iletişim bozularak hastada duyu ve/veya motor işlev kayıpları ortaya çıkabilmektedir. Yaralanma sonrası medulla spinalisin onarımı için travma bölgesinde aksonların remiyelinizasyonları ve traktusların yeniden büyümesi gerekmektedir. İskeleler aksonların rejenerasyonunu yönlendirip nöronların onarım sürecini hızlandırmaktadır. Kolajenler, hücre adezyonunu ve işlevlerini destekleyen doğal yapısı nedeniyle iskele çalışmalarında sıklıkla kullanılmaktadır. Yapılan hayvan ve insan çalışmaları kolajen temelli nörorejen iskelelerin duyusal ve motor düzeyde anlamlı kazanımlar sağladığını göstermektedir. Dünya çapında önemli morbidite ve mortalite nedenlerinden olan spinal kord yaralanmalarında bu gibi kazanımlar umut vericidir. Bu derlemede medulla spinalis yaralanmaları, mekanizması ve yaralanma sonrası nörorejen iskele uygulamalarını incelemeyi amaçladık.

Neuroregen Scaffolding Applications in Medulla Spinalis Injuries

The medulla spinalis is a central nervous system formation that communicates sensory and motor information between the brain and the peripheral nervous system. In spinal cord injuries, this communication is disrupted, and the patient may experience loss of sensory and motor function. For the repair of the spinal cord after injury, remyelination of axons and regrowth of tracts are required in the trauma area. Scaffolds direct the regeneration of axons and accelerate the repair process of neurons. Collagens are frequently used in scaffolding studies due to their natural structure that supports cell adhesion and functions. Animal and human studies show that collagen-based neuroregen scaffolds provide significant sensory and motor gains. Such gains are promising in spinal cord injuries, one of the major causes of morbidity and mortality worldwide. In this review, we aimed to examine medulla spinalis injuries, their mechanism, and post-injury neuroregenerative scaffold applications.

___

  • Adigun OO, Reddy V, Varacallo M. Anatomy, back, spinal cord. In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing 2019.
  • De Leener B, Taso M, Cohen-Adad J, Callot V. Segmentation of the human spinal cord. Magnetic Resonance Materials in Physics, Biology and Medicine. 2016;29(2):125-53.
  • Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clinical neuropharmacology. 2001;24(5):254-64.
  • Bennett J, Emmady P. Spinal Cord Injuries. In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing 2020.
  • McDonald JW, Sadowsky C. Spinal-cord injury. The Lancet. 2002;359(9304):417-25.
  • Lin H, Chen B, Wang B, Zhao Y, Sun W, Dai J. Novel nerve guidance material prepared from bovine aponeurosis. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;79(3):591-8.
  • Li Y, Liu Y, Li R, Bai H, Zhu Z, Zhu L, et al. Collagen-based biomaterials for bone tissue engineering. Materials & Design. 2021;210(110049):1-23.
  • Tang F, Tang J, Zhao Y, Zhang J, Xiao Z, Chen B, et al. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Science China Life Sciences. 2022;65(5):909-26.
  • Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, et al. NeuroRegen scaffolds combined with autologous bone marrow mononuclear cells for the repair of acute complete spinal cord injury: a 3-year clinical study. Cell Transplantation. 2020;29(0963689720950637):1-11.
  • Han S, Xiao Z, Li X, Zhao H, Wang B, Qiu Z, et al. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Science China Life Sciences. 2018;61(1):2-13.
  • Yeong WY, Chua CK, Leong KF, Chandrasekaran M, Lee MW. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping Journal. 2006.
  • Nocera AD, Comín R, Salvatierra NA, Cid MP. Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomedical Microdevices. 2018;20(2):1-13.
  • Xiao Z, Tang F, Zhao Y, Han G, Yin N, Li X, et al. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplantation. 2018;27(6):907-15.
  • Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, et al. Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell transplantation. 2017;26(5):891-900.
  • Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34(21):5107-16.
  • Hatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, et al. Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy. 2009;11(5):618-30.
  • Breen BA, Kraskiewicz H, Ronan R, Kshiragar A, Patar A, Sargeant T, et al. Therapeutic effect of neurotrophin-3 treatment in an injectable collagen scaffold following rat spinal cord hemisection injury. ACS Biomaterials Science & Engineering. 2017;3(7):1287-95.
  • Peng Z, Gao W, Yue B, Jiang J, Gu Y, Dai J, et al. Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization. J Tissue Eng Regen Med. 2018;12(3):e1725-e36.
  • Shi Q, Gao W, Han X, Zhu X, Sun J, Xie F, et al. Collagen scaffolds modified with collagen-binding bFGF promotes the neural regeneration in a rat hemisected spinal cord injury model. Sci China Life Sci. 2014;57(2):232-40.
  • Han Q, Sun W, Lin H, Zhao W, Gao Y, Zhao Y, et al. Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Engineering Part A. 2009;15(10):2927-35.
  • Han S, Wang B, Jin W, Xiao Z, Li X, Ding W, et al. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials. 2015;41(2015-02-01):89-96.