Motor hata etkisi altında multikopterlerin kontrol edilebilirliği

Multikopter insansız hava araçları (İHA) hem askeri hem de sivil uygulamalarda giderek daha fazla kullanılmaktadır. Motor arızası veya kaybı, görev ve operasyon sırasında meydana gelebilecek multikopterlerde yaygın bir arıza türüdür. Quadcopters ve hexarotors dahil olmak üzere multikopterlerde arızalı motorla ilgili çeşitli arıza konfigürasyonları göz önünde bulundurulur. Farklı motorlarda arıza bulunması, aracın gövde eksenlerinde farklı kontrol edilebilirliklere yol açabilir. Burada konfigürasyonlar, multikopterin keyfi motorundaki arızaya göre multikopterin gövde eksenlerinin dönüş açısı anlamına gelir. Bu nedenle, motor arızalarının varlığında hangi konfigürasyonun daha iyi güvenilirliğe sahip olduğunu bilmek önemlidir. Multikopterin güvenilirliği ve kurtarılabilirliği, kontrol edilebilirliği ile büyük ölçüde ilişkili olduğundan, bir kontrol hedefi olarak doğrusal sistemler teorisinden türetilen kontrol edilebilirlik gramian yaklaşımı. Kontrol edilebilirlik gramianının özdeğerleri, karşılık gelen özvektörü kontrol etmek için gereken enerji için bir vekil olarak kullanılabilir. Buna göre, sonuçlar motor arızasının multikopter kontrol edilebilirliği üzerindeki etkisini açıkça göstermektedir. Ek olarak, bu yazıda, farklı motor arızalarında quadrotor ve hexarotors için minimum gerekli enerjiye sahip konfigürasyonlar tanıtılmaktadır.

Controlability of multi-rotors under motor fault effect

The multi-rotor unmanned aerial vehicles (UAVs) are being increasingly applied in both military and civil applications. Motor fault or failure is a common type of fault on multi-rotors, which might take place during mission and operation. Various configurations of fault are considered regarding the desired faulty motor in multi-rotors including the quadcopters and hexarotors. The existence of fault on different motors can lead to different controllability around the vehicle’s body axes. Here, configurations mean the rotation angle of the multi-rotor’s body axes respecting the fault or failure on the arbitrary motor of the multi-rotor. Therefore, it is essential to know which configuration has better reliability in the presence of motor faults or failures. Since the multirotor’s reliability and recoverability is highly related to its controllability, the controllability gramian approach, which is derived from the linear systems theory, as a control objective. The eigenvalues of the controllability gramian can be used as a surrogate for the energy required to control the corresponding eigenvector. Accordingly, the results clearly demonstrate the effect of motor fault on multi-rotor controllability. Additionally, in this paper, configurations with minimum required energy are introduced for quadrotors and hexarotors in different motor faults and failures.

___

  • [1]Turan, V., Avşar, E., Asadi, D., Aydın, E. (2021). Image processing based autonomous landing zone detection for a multi-rotor drone in emergency situations. Turkish Journal of Engineering, 5(4): 193-200.
  • [2] Asadi, D. (2022). Partial engine fault detection and control of a Quadrotor considering model uncertainty. Turkish Journal of Engineering, 6(2): 106-117.
  • [3]Asadi, D., Ahmadi, K., Nabavi, S. Y. (2021). Fault-tolerant Trajectory Tracking Control of a Quadcopter in Presence of a Motor Fault. International Journal of Aeronautical & Space Sciences,1-14.
  • [4] Asadi, D., Atkins E. M. (2018). Multi-objective weight optimization for trajectory planning of an airplane with structural damage. Journal of Intelligent & Robotic Systems. 91(3), 667-690.
  • [5] Asadi, D., Sabzehparvar, M., Atkins, E. M., and Talebi, H. A. (2014). Damaged airplane trajectory planning based on flight envelope and stability of motion primitives. Journal of Aircraft, 51(6), 1740-1757.
  • [6] Asadi, D., Sabzehparvar, M., Talebi, H.A. (2013). Damaged airplane flight envelope and stability evaluation. Aircraft Engineering and Aerospace Technology, 85(3),186-198.
  • [7] Ahmadi, K., Asadi, D., Pazooki, F.(2017). Nonlinear L1 adaptive control of an airplane with structural damage. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(1), 341-353.
  • [8] Asadi, D., Ahmadi, K., Nonlinear Robust adaptive control of an airplane with structural damage, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020. doi:10.1177/0954410020926618.
  • [9] Asadi, D., Bagherzadeh, S. (2017). Nonlinear adaptive sliding mode tracking control of an airplane with wing damage. Proceedings of the Institution of Mechanical Eng., Part G: Journal of Aerospace Engineering, 232 (8), 1405-1420.
  • [10] Alwi, H., Edwards, C. (2013). Fault-tolerant control of an octorotor using LPV based sliding mode control allocation. American Control Conference (ACC), 6505–6510.
  • [11] Navabi, M., Davoodi, A., Mirzaei, H. (2021). Trajectory tracking of under-actuated quadcopter using Lyapunov-based optimum adaptive controller. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1, 1-14.
  • [12] Ahmadi Dastgerdi, K., Pazooki, F., Roshanian, J. (2020). Model reference adaptive control of a small satellite in the presence of parameter uncertainties. Scientia Iranica, 27(6): 2933-2944.
  • [13] Asadi, D., Sabzehparvar, M. Talebi, H.A. (2013). Damaged airplane flight envelope and stability evaluation. Aircraft Engineering and Aerospace Technology, 85(3),186-198.
  • [14] Gao, Z., Cecati, C., Ding, S.X. (2015). A survey of fault diagnosis and fault-tolerant techniques—part I: fault diagnosis with modelbased and signal-based approaches. IEEE Trans Ind Electro 62(6):3757–3767.
  • [15] Amoozgar, M.H., Chamseddine, A., Zhang, Y. (2013). Experimental test of a two-stage Kalman flter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. J Intell Robot Syst, 70, 107–117.
  • [16] Cen, Z., Noura, H., Susilo, B.T., Younes, Y.A. (2014). Robust fault diagnosis for quadrotor UAVs using adaptive Thau observer. J Intell Robot Syst, 73(1–4),573–588 26.
  • [17] Han. W., Wang, Z., Yi, S. (2018). Fault estimation for a quadrotor unmanned aerial vehicle by integrating the parity space approach with recursive least squares. Proc Inst Mech Eng G, 232(4), 783–796.
  • [18] Dongjie, S., Binxian, Y., Quan, Q. (2016). Reliability analysis of multicopter configurations based on controllability theory. Proceedings of the 35th Chinese Control Conference July 27-29, Chengdu, China.
  • [19] Pasqualetti, F., Zampieri, S., Bullo, F. (2014). Controllability metrics, limitations and algorithms for complex networks. IEEE Transactions on Control of Network Systems, 1(1), 40–52.
  • [20] Lindmark, G., Altafini, C. (2018). Minimum energy control for complex networks. Nature Scientific Reports, 8(1), 1–14.
  • [21] Chaisena, K., Chamniprasart, K., Tantrairatn, S. (2018). An automatic stabilizing system for balancing a multi-rotor subject to variations in center of gravity and mass. Third International Conference on Engineering Science and Innovative Technology (ESIT), 1-5, doi: 10.1109/ESIT.2018.8665339.
  • [22] Cutler, M., How, J. P. (2015). Analysis and control of a variable-pitch quadrotor for agile flight. ASME. J. Dyn. Sys., Meas., Control. 137(10): 101002. https://doi.org/10.1115/1.4030676.
  • [23] Kumar, R., Deshpande, A. M., Wells, J. Z., Kumar, M. (2020). Flight control of sliding arm quadcopter with dynamic structural parameters. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1358-1363, doi: 10.1109/IROS45743.2020.9340694.
  • [24] Driessens, S., Pounds, P. (2015). The triangular quadrotor: a more efficient quadrotor configuration. IEEE Transactions on Robotics, 31(6), 1517-1526.
  • [25] Magnussen, O., Hovland, G., Ottestad, M. (2014). Multicopter UAV design optimization, in 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1-6.
  • [26] Lanzon, A., Freddi, A., Longhi, S. (2014). Flight control of a quadrotor vehicle subsequent to a rotor failure. Journal of Guidance, Control, and Dynamics, 37(2), 580–591.
  • [27] Mueller, M. W., D’Andrea, R. (2014). Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. Robotics and Automation (ICRA), IEEE International Conference on, 45–52.
  • [28] Du, G.-X., Quan, Q., and Cai, K.-Y. (2015). Controllability analysis and degraded control for a class of hexacopters subject to rotor failures. Journal of Intelligent & Robotic Systems, 78(1), 143–157.
  • [29] Giribet, J. I., Sanchez-Pena, R. S., Ghersin, A. S. (2016). Analysis and design of a tilted rotor hexacopter for fault tolerance. IEEE Transactions on Aerospace and Electronic Systems, 52(4) 1555–1567.
  • [30] Lee, J., Choi, H. S., Shim, H. (2016). Fault-tolerant control of hexacopter for actuator faults using time delay control method. International Journal of Aeronautical and Space Sciences, 17, 54–63.
  • [31] Fault-tolerant Control Allocation for Multi-rotor Helicopters using Parametric Programming, Thomas Schneider, Guillaume Ducardy, Konrad Rudin, and Pascal Struplerz, Conference: International Micro Air Vehicle Braunschweig, Germany.
  • [32] Quan, Q. (2017). Introduction to Multicopter Design and Control. Springer, Singapore.
  • [33] Tahavori, M., Hasan, A. (2020). Fault recoverability for nonlinear systems with application to fault-tolerant control of UAVs. Aerospace Science and Technology, 107. 10.1016/j.ast.2020.106282.
  • [34] Gupta, R., Zhao, W., Kapania, R. K. (2020). Controllability gramian as control design objective in aircraft structural design optimization. AIAA Journal, 58(7), 3199–3220. https://doi.org/10.2514/1.J059102.