Moleküler demet epitaksi ile büyütülen Ga0.965Mn0.03Cr0.005As ince filmin optik karakterizasyonu

Bu çalışma kapsamında, Krom (Cr) ve Mangan (Mn) içeren GaMnCrAs epitabaka yapının optik özelliği sıcaklığa bağlı fotoiletkenlik (Fİ) tekniği ile araştırılmıştır. GaMnCrAs’in alaşım kompozisyonu ikincil iyon kütle spektroskopisi ile %3 Mn ve %0.5 Cr olarak belirlenmiştir. Taramalı Elektron Mikroskobu (SEM) görüntüsünden GaAs tampon tabakası ve GaMnCrAs epitabakası arayüzeyinin keskin olmadığı ve dislokasyonların olduğu gözlenmiştir. Fİ ölçümleri sonucunda, en şiddetli Fİ sinyali 30 K gibi düşük sıcaklıklarda elde edilmiştir. Bu durum düşük sıcaklıklarda aktif olmayan kusurlardan kaynaklanmaktadır. Orta sıcaklıklarda, aktif hale gelen kusurların foto-uyarılmış taşıyıcıları tuzaklamasından kaynaklı Fİ sinyali baskılanmıştır. Bu durum örneklerin yarı-yalıtkan karakterisitiğinden kaynaklanmaktadır. Tüm foto-uyarılmış ve termal olarak uyarılarak aktive olmuş taşıyıcılar yapı içerisinde bulunan doğal kusurlar tarafından tuzaklanmaktadır. Yüksek sıcaklıklarda Fİ sinyali GaAs’in band aralığı enerjisinin altında ve üstünde net bir şekilde elde edilmişken band kenarlarında herhangi bir optik geçiş gözlemlenmemiştir.

Optical characterization of Ga0.965Mn0.03Cr0.005As thin film grown by molecular beam epitaxy

In this study, optical properties of Chrome (Cr) and Manganese (Mn) containing GaMnCrAs epilayer are investigated using temperature dependent photoconductivity (PC) technique. Alloy composition is determined with secondary ion mass spectroscopy as 3% Mn and 0.5% Cr in GaMnCrAs. Scanning electron microscopy (SEM) image shows that the interface between GaAs buffer layer and GaMnCrAs epilayer is not abrupt and threadlike dislocations in GaAs are present. We observed the highest PC signal at the lowest temperature (T= 30 K) which can be explained in terms of non-activated defects at such low temperatures. At the intermediate temperatures, PC signals were suppressed due to the activation of the defects causing to trap of the photo-generated carriers. Such behaviour is originated from the semi-insulating character of the samples. Since photo-generated and thermally activated carriers are trapped by defects in the GaMnCrAs epilayer at high temperatures, the clear PC signal can be only observed both below and above fundamental bandgap energy of GaAs, while no optical transition between the band edges.

___

  • [1] Wolos, A., Kaminska, M. (2008). Magnetic Impurities in Wide Band-gap III-V Semiconductors, Semicond. Semimetals, 82, 325–369. doi:10.1016/S0080-8784(08)00008-2.
  • [2] Donmez, O., Erol, A., Çetinkaya, Ç., Çokduygulular, E., Aydın, M.,Yıldırım, S et al. (2021). A quantitative analysis of electronic transport in n- and p-type modulation-doped GaAsBi/AlGaAs quantum well structures, Semicond. Sci. Technol, 36, 115017. doi:10.1088/1361-6641/ac2af0.
  • [3] Gunes, M., Ukelge, M.O., Donmez, O., Erol, A., Gumus, C., Alghamdi, H. et al. (2018). Optical properties of GaAs1-xBix/GaAs quantum well structures grown by molecular beam epitaxy on (100) and (311)B GaAs substrates, Semicond. Sci. Technol. 33 (2018) 124015. doi:10.1088/1361-6641/aaea2e.
  • [4] Sarcan, F., Donmez, O., Kara, K., Erol, A., Akalın, M., Arıkan, M.C. et al. (2014). Bismuth-induced effects on optical, lattice vibrational, and structural properties of bulk GaAsBi alloys, Nanoscale Res. Lett. 9, 119. doi:10.1186/1556-276X-9-119.
  • [5] Dietl, T. (2010). A ten-year perspective on dilute magnetic semiconductors and oxides, Nat. Mater. 9, 965–974. doi:10.1038/nmat2898.
  • [6] Alberi, K., Yu, K.M., Stone, P.R., Dubon, O.D., Walukiewicz W., Wojtowicz, T. et al. (2008). Formation of Mn-derived impurity band in III-Mn-V alloys by valence band anticrossing, Phys. Rev. B - Condens. Matter Mater. Phys. 78, 075201. doi:10.1103/PhysRevB.78.075201.
  • [7] Bergqvist, L., Korzhavyi, P.A., Sanyal, B., Mirbt, S., Abrikosov, I.A., Nordström, L. et al. (2003). Magnetic and electronic structure of (Ga1−xMnx)As, Phys. Rev. B - Condens. Matter Mater. Phys. 67,205201. doi:10.1103/PhysRevB.67.205201.
  • [8] Gluba, L., Yastrubchak, O., Sȩk, G., Rudno-Rudziński, W., Sadowski, J., Kulik, M. et al. (2014). On the nature of the Mn-related states in the band structure of (Ga,Mn)As alloys via probing the E1 and E1 + Δ1 optical transitions, Appl. Phys. Lett. 105, 032408. doi:10.1063/1.4891329.
  • [9] Pelá, R.R., Marques, M., Ferreira, L.G., Furthmüller, J., Teles, L.K., (2012). GaMnAs: Position of Mn-d levels and majority spin band gap predicted from GGA-1/2 calculations, Appl. Phys. Lett. 100, 202408. doi:10.1063/1.4718602.
  • [10]Chioncel, L., Leonov, I., Allmaier, H., Beiuşeanu, F., E. Arrigoni, T. Jurcuţ, et al. (2011). Electronic correlations in short-period (CrAs)n/(GaAs) n ferromagnetic heterostructures, Phys. Rev. B 83, 035307. doi:10.1103/PhysRevB.83.035307.
  • [11]Erol, A., Arıkan, M.Ç. (2012). Photoconductivity and Transient Spectroscopy, Semicond. Res. Exp. Tech., Springer. doi:10.1007/978-3-642-23351-7_12.
  • [12]Adachi, S., (1985). GaAs, AlAs, and Al x Ga 1− x As: Material parameters for use in research and device applications, J. Appl. Phys. 58, R1–R29. doi:10.1063/1.336070.
  • [13]Ibáñez, J., Edmonds, K. W., Henini, M., Eaves, L., Pastor, D., Cuscó, R. et al. (2005). Electrical characterisation of (Ga,Mn,Cr)As thin films grown by molecular beam epitaxy, J. Cryst. Growth. 278, 695–698. doi:10.1016/j.jcrysgro.2004.12.093.
  • [14]Feichtinger, H., Deep Centers in Semiconductors, Handb. Semicond. Technol., Wiley. doi:10.1002/9783527621842.ch4.
  • [15]Look, D.C., Chaudhuri, S., Eaves, L. (1982). Positive Identification of the Cr(+4)-Cr(+3) Thermal Transition in GaAs, Phys. Rev. Lett. 49, 728–1731. doi:10.1103/PhysRevLett.49.1728.