Memeli Tümör ve Normal Hücre Hatlarında Nanopartikül Uygulamaları

İki binli yıllarda nanoteknolojinin hızla ilerlemesi sonucu, nano tıp yeni bir bilim dalı ve teknoloji alanı olarak ortaya çıkmış ve 21. yüzyılın en ölümcül hastalığı olan kansere çareler aranmıştır. Son yıllarda, hücre hattı uygulamaları ile nanoteknoloji biliminin birleşmesiyle tümör hücrelerini öldüren, sağlıklı (normal) hücrelere hasar vermeyen nanopartiküllerle üretilen yeni nesil ilaçlarla hedefe yönelik kanser tedavilerinin geliştirilmesi amaçlanmıştır. Bu derlemede, memeli tümör ve normal hücre hatlarında nanopartikül uygulamaları ile ilgili son yıllarda yapılan çalışmalar ele alınmıştır

Nanoparticle Applications in Mammalian Tumor and Normal Cell Lines

In the 2000s, as a result of the rapid progress of nanotechnology, nanomedicine emerged as a new science and technology field, and the most deadly disease of the 21st century, cancer remedies were sought. In recent years, by combining cell line applications and nanotechnology, it is aimed to develop targeted cancer treatments with new generation drugs produced by using nanoparticles which kill tumor cells and which do not damage healthy (normal) cells. In this review, recent studies on nanoparticle applications in mammalian normal and tumor cell lines were discussed..

___

  • Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman CL, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention. Cancer Lett. 2008;266:60-72.
  • Stein A, Melde BJ, Schroden RC. Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater. 2000;12:1403-19.
  • Han YJ, Stucky GD, Butler A. Mesoporous silicate sequestration and release of proteins. J Am Chem Soc. 1999;121:9897-8.
  • Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small. 2007;3:1341–6.
  • Lu F, Doane TL, Zhu JJ, Burda C. Gold nanoparticles for diagnostic sensing and therapy. Inorganica Chim Acta. 2012;393:142-153
  • Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev. 2012;41:2885–2911.
  • Garcia ME, Baker LA, Crooks RM. Preparation and characterization of dendrimer-gold colloid nanocomposites. Anal Chem. 1999;71:256-8.
  • Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei BW, Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc.2008;130:10643-7.
  • El-Sayed IH, Huang XH, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5:829-34.
  • Zhang JD, Oyama M. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim Acta. 2004;50:85-90
  • Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ. A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol−gel network. Anal Chem. 2002;74:2217-23.
  • Smith BD, Dave N, Huang PJJ, Liu JW. Assembly of DNA-functionalized gold nanoparticles with gaps and overhangs in linker DNA. J Phys Chem. 2011;115:7851-7.
  • Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett. 2007;7:3818-21
  • Lee JS, Han MS, Mirkin CA, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles. Angewandte Chemie. 2007;119:4171-4.
  • Rosi, NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulatio. Science. 2006;312:1027-30.
  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909-15
  • Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta. 2007;598:181-92.
  • Tan G, Onur MA, Sağlam N. Utilization of gold nanostructures in biomedical applications. Turkish Journal of Biology. 2012;36:607-21
  • Tsai GJ. Su WH. Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot. 1999;62:239-43.
  • Sudarshan NR, Hoover DG, Knorr D. Antibacterial action of chitosan. Food Biotechnol. 1992;6:257-72.
  • Qin C, Du Y, Xiao L, Li Z, Gao X. Enzymic preparation of water-soluble chitosan and their antitumor activity. Int J Biol Macromol. 2002;31:111-7.
  • Schipper NGM, Olsson S, Hoogstraate JA, deBoer AG, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm Res. 1997;14:923–9.
  • Pushpalatha E, Muthukrishnan J. Larvicidal activity of few plant extracts against culex quinque-fasciatus and Anopheles stephensi. Indian J Malariol. 1995;32:14-23.
  • Alam MI. A Gomes snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. J Ethnopharmacol. 2003;86:75-80.
  • Woradulayapinij W, Soonthonhareonnon N, Wiwat C. In vitro HIV type1 reverse transcriptase inhibitory activities of Thai medicinal and Canna indica L. rhizome. J Ethnopharmacol. 2005;101:84–9.
  • Umamaheswari M, Asokumar K, Somasundaram A, Sivashanmugam T, Subhadradevi V, Ravi TK. Xanthine oxidase inhibitory activity of some Indian medical plants. J Ethnopharmacol. 2007;109:547-51.
  • Telang RS, Chatterjee S, Varshneya C. Studies on analgesic and antiinflammatory activities of Vitex negundo Linn. Indian J Pharmacol. 1999;31:363–6.
  • Manikandan R, Sundaram R, Srinivan P, Beulaja S, Arulvasu C. Isolation of 1, 2 di-substituted idopyranose from Vitex negundo and its effects on diabetic rats. International Journal of Pharmaceuticals Analysis. 2009;2:4-10.
  • Perumal Samy R, Ignacimuthu S, Sen A. Screening of 34 medicinal plants for antibacterial properties. J Ethnopharmacol. 1998;62:173-82.
  • Haddad M, Laurens V, Lacaille-Dubois MA. Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia. Bioorg Med Chem. 2004;12:4725–34.
  • Lacaille-Dubois MA, Wagner H. Bioactive saponins from plants: An update. In Studies in Natural Products Chemistry (Ed. R Attaur):633-87. The Netherlands, Elsevier Science, 2000.
  • Kaneria M, Baravalia Y, Vaghasiya Y, Chanda S. Determination of antibacterial and antioxidant potential of some medicinal plants from Saurashtra Region, India. Indian J Pharm Sci. 2009;71:406-12.
  • Nathan SS, Savitha G, George DK, Narmadha A, Suganya L, Chung PG. Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol. 2006;97:1316–23.
  • Jabeen K, Javaid A, Ahmad E, Athar M. Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Nat Prod Res. 2010;1-13.
  • Szewczuk VD, Mongelli ER, Pomilio AB. In vitro anthelmintic activity of Melia azedarach naturalized in Argentina. Phytother Res. 2006;20:993–6.
  • Roopan MS, Kumar SHS, Madhumitha G, Suthindhiran K. Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Appl Biochem Biotechnol. 2015;175:1567–75.
  • Bose AC, Thangadurai P, Ramasamy S. Grain size dependent electrical studies on nanocrystalline SnO2. Mater Chem Phys. 2006;95:72-8.
  • Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. Nanobiotechnology. 2015;13:1.
  • Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. Naresuan University Journal. 2013;11:51–66.
  • Limpeanchob N, Tiyaboonchai W, Lamlertthon S, Viyoch J, Jaipan S. Efficacy and toxicity of amphotericin b-chitosan nanoparticles in mice with induced systemic candidiasis. Naresuan University Journal. 2013;14:27-34.
  • Paul W, Shelma R, Sharma CP. Alginate encapsulated anacardic acid-chitosan self aggregated nanoparticles for intestinal delivery of protein drugs. J Nanopharm Drug Deliv. 2013;1:82-91.
  • Wang C, Jiang Y, Li X, Hu L. Thioglucose-bound gold nanoparticles increase the radiosensitivity of a triple-negative breast cancer cell line (MDA-MB-231).Breast Cancer. 2015;22:413-20.
  • Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 2011;22:285101.
  • Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine. 2013;8:1601-9.
  • Tsiamas P, Liu B, Cifter F, Ngwa WF, Berbeco RI, Kappas C et al. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys Med Biol. 2013;58:451–64.
  • Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33:6408-19.
  • Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S et al. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Inv Med. 2008;31:E160–7.
  • Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S et al. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small. 2008;4:1537-43.
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.
  • Voicu PNS, Dinu D, Sima C, Hermenean A, Ardelean A, Codrici E etal. Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line. Int J Mol Sci. 2015;16:29398-416.
  • Peters R, Kramer E, Oomen AG, Rivera ZE, Oegema G, Tromp PC et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano. 2012;6:2441-51.
  • Kempen PJ, Greasley S, Parker KA, Campbell JC, Chang HY, Jones JR et al. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics. 2015;6:631–42.
  • Wu X, Min MS, Zao JX. Recent development of silica nanoparticles as delivery vectors from cancerimaging and therapy. Nanomedicine. 2014;10:297-312.
  • Nakamura T, Sugihara F, Matsushita H, Yoshioka Y, Mizukami S, Kikuch K. Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chem Sci. 2015;6:1986–90.
  • Tay lor KML, Kim JS, Rieter WJ, An H, Lin W, Lin W. Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc. 2008;130:2154–5.
  • Steenland K, Ward E. Silica: a lung carcinogen. CA Cancer J Clin. 2014;64:63-9.
  • Merget R, Bauer T, Küpper HU, Philippou S, Bauer HD, Breitstadt R, Bruening T. Health hazards due to the inhalation of amorphous silica. Arch Toxicol. 2002;75:625-34.
  • Ramar M, Manikandan B, Marimuthu NP, Raman T, Mahalingam A, Subramanian P et al. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim Acta A Mol Biomol Spectrosc. 2015;140:223–8.
  • Schultz S, Smith DR, Mock JJ, Schultz DA. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci U S A. 2000;97:996-1001.
  • Alarifi S, Ali D, Alkahtani S, Alhader MS. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res. 2014;159:416-24.
  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43:33-56.
  • Van der Zee J. Heating the patient: a promising approach?. Ann Oncol. 2002;13:1173-84.
  • Alghamdi IG, Hussain II, AlghamdiMS, El-Sheemy MA. The incidence rate of female breast cancer in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi Cancer Registry 2001-2008. Breast Cancer (Dove Med Res). 2013;5:103-9.
  • Han WJ, Gurunathan S, Jeong JK, Choi YJ, Kwon DN, Park JK et al Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res Lett. 2014;9:459.
  • Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1-12.
  • Huang FK, Chen WC, Lai SF, Liu CJ, Wang CL, Wang CH et al. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol. 2010;55:469-82.
  • Medarova Z, Pham W, Kim Y, Dai G, Moore A. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer. 2006;118:2796–2802.
  • Chueh JP, Liang RY, Lee YH, Zeng ZM, Chuang SM. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J Hazard Mater. 2014;264:303–12.
  • Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256-82.
  • El-Kassas YH, El-Sheekh MM. Cytotoxicity of Biosynthesized Gold Nanoparticles with an Extract of the Corallina officinalis in MCF-7 Cells. Asian Pac J Cancer Prev. 2014;15:4311-7.
  • Selim ME, Hendi AA. Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev. 2012;13:1617-20.
  • Faedmaleki F, Shirazi HF, Salarian A-A, Ashtiani AH, Rastegar H. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res. 2014;13:235-42.
  • Gengan RM, An K, Phulukdaree A, Chuturgoon A. A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids Surf B Biointerfaces. 2013;105:87-91.
  • Eldeen IMS, Elgorashi EE, Staden JV. Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. J Ethnopharmacol. 2005;102:457.
  • Haddad M, Miyamoto T, Lacaille-Dubois MA. New triterpenoidal saponins acylated with monoterpenic acid from Albizia adianthifolia. Helv Chim Acta. 2004;87:1228.
  • Haddad M, Laurens V, Lacaille-Dubois MA. Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia. Bioorg Med Chem. 2004;12:4725-34.
  • Haddad M, Khan IA, Dubois MAL. Two new prosapogenins from Albizia adianthifolia. Die Pharmazie. 2002;57:705-8.
  • Lacaille-Dubois MA, Wagner H. A review of the biological and pharmacological activities of saponins. Phytomedicine. 1996;2:363-86.
  • Francis G, Kerem Z, Makkar HP, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr. 2002;88:587-605.
  • Mujoo K, Haridas V, Hoffmann JJ, Wachter GA, Hutter LK, Lu Y et al. Triterpenoid saponins from Acacia victoriae (Bentham) decrease tumor cell proliferation and induce apoptosis. Cancer Res. 2011;61:5486-90.
  • Haddad M, Laurens V, Lacaille-Dubois MA. Induction of apoptosis in a leukemia cell line by triterpenesaponins from Albizia adianthifolia. Bioorg Med Chem. 2004;12:4725–34.
  • Lacaille-Dubois MA, Hanquet B, Cui ZH, Lou ZC, Wagner H. Acylated triterpene saponins from Silene jenisseensis. Phytochemistry. 1995;40:509-14.
  • Govender R, Phulukdaree A, Gengan MR, An K, Chuturgoon AA. Silver nanoparticles of Albizia adianthifolia: the induction of apoptosis in human lung carcinoma cell line. J Nanobiotechnology. 2011;11:5
  • Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S. Silver nano—a trove for retinal therapies. J Control Release. 2010;145:76–90.
  • Bhattacharya R, Mukherjee P. Biological properties of "naked" metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–306.
  • Sharma M, Salisbury LR, Maurer IE, Hussain MS, Sulentic EVC. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line. Nanoscale. 2013;5:3747.
  • Alarifi S, Ali D, Y AO, Ahamed M, Siddiqui MA, Al-Khedhairy AA. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int J Nanomedicine. 2013;8:189-99.
  • Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013;48:317-24
  • Arulvasu C, Prabhu D, Manikandan R, Srinivasan P, Sellamuthu S, Dinesh D et al. Induction of apoptosis by the aqueous and ethanolic leaf extract of Vitex negundo L. in MCF-7 human breast cancer cells. International Journal of Drug Discovery. 2010;2:1-7.
  • Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nano—a trove for retinal therapies. J Control Release. 2010;145:76-90.
  • Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289-306.
  • Sukirtha R, Priyanka MK, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P et al. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem. 2012;47:273-9.
  • Morones JR, Elechiguerra LJ, Camacho A, Holt K, Kouri BJ, Ramirez TJ et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346-53.
  • AshaRani PV, Mun, KLG, Hande, PM, Valiyaveettil S. ACS Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008;3:279-90.
  • Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 2011;5:1657-69
  • Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8:543-57.
  • Yu S, Chow GMJ. Carboxyl group (–CO 2 H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem. 2004;14:2781-6.
  • Florence ATJ. Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Target. 2004;12:65-70.
  • Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature. 2000;404:746-8.
  • Rogach A, Susha A, Caruso F, Sukhorukov G, Kornowski A, Kershaw S et al. Nano‐and Microengineering: 3‐d colloidal photonic crystals prepared from sub‐μm‐sized polystyrene latex spheres pre‐coated with luminescent polyelectrolyte/nanocrystal shells. Adv Mater. 2000;12:333-7
  • Velev OD, Kaler E. W. In situ assembly of colloidal particles into miniaturized biosensors. Langmuir. 1999;15:3693-8
  • Foldbjerg R, Dang AD, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85:743-50.
  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW et al. Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009;3:109-38.
  • Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH et al. Silver (I)− imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc. 2005;127:2285-91.
  • Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55:59-63.
  • Ahamed M, Akhtar JM, Raja M, Ahmad I, Siddiqui JKM, AlSalhi SM etal. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine. 2011;7:904-13.
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine. 2011;7:184-92.
  • Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C. Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2009;2:882-90.
  • Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A et al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008;19:295103.
  • Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chim Acta. 2007;360:794-802.
  • Yuranova T, Laub D, Kiwi J. Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catal Today. 2007;122:109-17.
  • Wang ZL. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano. 2008;2:1987-92.
  • Ahamed M, Akhtar JM, Siddiqui AM, Ahmad J, Musarrat J, Al-Khedhairy AA et al. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology. 2011;283;101-8.
  • Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Chemically prepared magnetic nanoparticles. Int Mater Rev. 2004;49:125-70.
  • Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29:487-96.
  • Sun C, Lee JH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252-65.
  • Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2007;13:95-9
  • Rana S, Gallo A, Srivastava RS, Misra RK. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. Acta Biomaterialia. 2007;3:233-42.
  • Tang J, Liu Y, Yin P, Yao G, Yan G, Den C et al. Concanavalin A‐immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocelluar carcinoma cell line. Proteomics. 2010;10:2000-14.
  • Guiseppi-Elie A, Sheppard NF, Brahim, S, Narinesingh D. Enzyme microgels in packed‐bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays. Biotechnol Bioeng. 2001;75:475-84.
  • Horak C, Rittich B, Safar J, Spanova A, Lenfeld J, Bense MJ. Properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) microspheres. Biotechnol Prog. 2001;17:447–52.
  • Deng YH, Wang CC, Shen XZ, Yang WL, Jin L, Gao H et al. Preparation, characterization, and application of multistimuli‐responsive microspheres with fluorescence‐labeled magnetic cores and thermoresponsive shells. Chemistry. 2005;11:6006-13.
  • Gupta PK, Hung CT. Minireview Magnetically controlled targeted micro-carrier systems. Life Sci. 1989;44:175-86.
  • Deng YH, Deng CH, Yang D, Wang C, Fu S, Zhang X. Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. Chem Commun (Camb). 2005;44:5548-50.
  • Nandigala P, Chen TH, Yang C, Hsu WH, Heath C. Immunomagnetic isolation of islets from the rat pancreas. Biotechnol Prog. 1997;13:844-8.
  • Hosta-Rigau L, Olmedo I, Arbiol J, Cruz JL, Kogan JM. Multifunctionalized gold nanoparticles with peptides targeted to gastrin-releasing peptide receptor of a tumor cell line. Bioconjug Chem. 2010;21:1070-8.
  • Bhattacharya R, Mukherjee P, Xiong Z, Atala A, Soker S, Mukhopadhyay D. Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett. 2004;4:2479-81.
  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078-81.
  • Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63:1999-2004.
  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal,E, Boczkowski J et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol. 2009;6:14.
  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11.
  • Chattopadhyay N, Zastre J, Wong HL, Wu YX, Bendayan R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res. 2008;25:2262-71.
  • Wang J, Sun X, Zhang Z. Enhanced brain targeting by synthesis of 3′, 5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm. 2002;54:285-90.
  • Chang JS, Chang KLB, Hwang DF, Kong ZL. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol. 2007;41:2064-8.
  • Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A. 2005;102:279-84.
  • Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc Natl Acad Sci U S A. 2005;102:2273-6.
  • Barbe C, Bartlet J, Kong L, Finnie K, Lin HQ, Larkin M et al. Silica particles: a novel drug-delivery system. Adv Mater. 2004;16:1959-66.
  • Luo D, Han E, Belcheva N, Saltzman WMJ. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Control Release. 2004;95:333-41.
  • Wang L, Yang C, Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett. 2005;5:37-43.
  • Wang L, Tan W. Multicolor FRET silica nanoparticles by single wavelength excitationNano Lett. 2006;6:84-8.
  • Wang,L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE et al. Watching silica nanoparticles glow in the biological world. Anal Chem. 2006;78:646-54.
  • Zhao X, Hilliard L, Mechery S, Wang Y, Bagwe R, Jin S et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A. 2004;101:15027-32.
  • Qi LF, Xu ZR, Li Y, Jiang X, Han XY. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol. 2005;11:5136-41.
  • Zheng LY, Zhu JF. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym. 2003;54:527-30.
  • Roller S, Covill N. The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol. 1999;47:67-77.
  • Qin C, Du Y, Xiao L, Li Z, Gao X. Enzymic preparation of water-soluble chitosan and their antitumor activity. Int J Biol Macromol. 2002;31:111-7.
  • Qi L, Xu Z, Jiang X, Li Y, Wang M. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett. 2005;15:1397-9.
  • Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250:215-26.
  • De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. application to cyclosporin A. Int J Pharm. 2001;224:159-68.
  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255-67.
  • Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angewandte Chemie International Edition. 1999;38:1912-5.
  • Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin YB, Terui N et al. Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environ Sci Technol. 2004;38:6890-
  • Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL et al. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 2004;4:2473–7.
  • Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl. 2004;43:5242-6.
  • Bianco A. Kostarelos K, Partidos CD, Prato M. Applications of carbon nanotubes in drug delivery. Chem Commun (Camb). 2005;9:574-679.
  • Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K. Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm. 2004;1:399–405.
  • Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL, Ke PC. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 2004;4:2473–7.
  • Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003;10:961-6.
  • Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb). 2004;1:16-7.
  • Bianco A. Prato M. Can carbon nanotubes be considered useful tools for biological applications? Adv Mater. 2003;15:1765-8.
  • Woolley AT, Guillemette C, Cheung CL, Housman DE, Lieber CM. Structural biology with carbon nanotube AFM probes. Chem Biol Nat. 2000;7:193-204.
  • Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002;19:1488-94.
  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73:255–67.
  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher A N, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev. 2001;51:81-96.
  • Na K, Park KH, Kim WS, Bae HY. Na K, Park KH et al. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release. 2000;69:225-36.
  • Ostling O, Johanson KJ. Microelectrophoretic study of radiation induced DNA damage in individual mammalian cells. Biochem Biophys Res Commun. 1984;123:291-8.
  • Horoz M, Bolukbas C, Bolukbas F et al. Assessment of peripheral DNA damage by alkaline comet assay in maintenance hemodialysis subjects with hepatitis C infection. Mutat Res. 2006;596:137-42.
  • Fidan AF. DNA Hasar Tespitinde Tek Hücre Jel Elektroforezi. Afyon Kocatepe Üniversitesi, Fen Bilimleri Dergisi. 2008;8:53-64.
  • Singh NP. Microgel electrophoresis of DNA from individual cells In Principles and Methodology, Technologies for Detection of DNA Damage and Mutations (Ed. GP Pfeifer). New York, Plenum Press, 1996.
  • Hamdan M, Righetti P. Proteomics Today. Protein Assessment and Biomarkers Using Mass Spectrometry, 2D Electrophoresis, and Microarray Technology. Honoken, Wiley, 2005.
  • Mahmood T, Yang PC. Western Blot: technique, theory, and trouble shooting. Am J Med Sci. 2012;4:429-34.
  • Ak M. Enzyme linked immunosorbent assay (ELISA). In: Parazit Hastalıklarında Tanı (Eds MA Özcel, N Altıntaş):241-59. İzmir, Ege Üniversitesi Basımevi, 1997.
  • Schnedi W, Mikelssar AV, Breitenback M, Dann 0. DIPI and DAPI: fluorescence banding with only negligible fading. Hum Genet. 1977;36:167-72.
  • Lin MS. Comings DE, Alfi OS. Optical studies ofthe interaction of4’6-diamidino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma. 1977;60:15.
  • Comings DE. Mechanisms of chromosome banding. VIII. Hoechst 33258-DNA interaction. Chromosoma. 1975;52:229–43.
  • Kapuscinski J, Skoczylas B. Simple and rapid fluorimetric method for DNA microassay. Anal Biochem. 1977;83:252.
  • Hill BT, Whatley S. A simple, rapid microassay for DNA. FEBS Lett. 1975;56:20.
  • Brunk CF, Jones KC, James TW. Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem. 1979;92:497.
  • Porter GA, Janicke UR. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99-104.
  • Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312-16.
  • Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998;12:1551-70.
  • Nicholson DW, Thornberry A. Caspases: killer proteases. Trends Biochem Sci. 1997;22:299-306.
  • Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88:347-54.
  • Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456-62.
  • Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3:1125-31.
  • Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett. 2006;460:171-7.
  • WroblewskI F, Ladue JS. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955;90:210-3.
  • Van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture Cytometry. 1996;24:131-9
  • Wataha JC. Principles of biocompatibility for dental practitioners. J Prosthet Dent. 2001;86:203-9.
  • Smith DC, Williams DF. Biocompatibility of Dental Materials. Boca Raton, CRC Press, 2001.
  • Berridge MV, Herst PM, Tan AS, El-Gewely MR. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127-52.
  • Shoemaker, RH. The NCI60 human tumour cell line anticancer drug screen. A comprehensive review of the NCI60 anticancer drug discovery programme, highlighting its history, methodology and major achievements. Nat Rev Cancer. 2006; 6:813-23.
  • Na K, Park H-K, Kim WS, Bae HY. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release. 2000; 69:225–36.
  • Dunn SE, Coombes AGA,. Garnett MC, Davis SS, Davies MC, Illum L. In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. J Control Release. 1997;44:65–76.
  • Allemann E, Gurny R, Doelker E. Drug-loaded nanoparticles preparation methods and drug targeting issues. Eur J Pharm Biopharm. 1993;39:173–91.
  • Kreuter J. Nanoparticle-based drug delivery systems. J Control Release. 1991;16:169–76.
  • Davis SS, Illum L. Drug targeting using colloidal carriers. Proc Int Symp Control Release Bioact Mater. 1985;12:326–32.
  • Frei E. 3rd. The National Cancer Chemotherapy Program. Science. 1982;217:600-6.
  • Sharma VS, Haber AH, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;10:241-53.
  • Teicher BA, Andrews PA. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Totowa, Humana Press, 2004.
  • Shoemaker RH, Abott BJ, MacDonald MM, Mayo JG, Venditti JM. Wolpert De-Filippes MK. Use of the KB cell line for in vitro cytotoxicity assays. Cancer Treat Rep. 1983;67:97.
  • Nelson-Rees, W. A. The identification and monitoring of cell line specificity. Prog Clin Biol Res.1978;26:25–79.
  • Nelson-Rees WA, Flandermeyer RR. Inter and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science. 1977;195:1343-4.
  • Nelson-Rees WA, Flandermeyer RR, Hawthorne PK. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science. 1974;184:1093-6.
  • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nature Rev Cancer. 2006;.6:813–23.
  • Kim BY, Rutka JT, Chan WC. Nanomedicine. New Engl J Med. 2010;363:2434-43.
  • Boczkowski J, Hoet P. What's new in nanotoxicology? implications for public health from a brief review of the 2008 literature. Nanotoxicology. 2010;4:1-14
  • Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. FASEB J. 2011;5:1657–69
  • Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J. Pharm. 2010;385:113-42.
  • Moghimi S, M, Hunter A, C, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–30.
  • Xie J, Huang J, Li, X, Sun S, Chen X. Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem. 2009;16:1278-94.