Meme Kanserinde Epigenetik Tedavi

Hem genetik hem de epigenetik değişikliklerle kanser ilerlemesi kontrol altına alınabilmektedir. Genetik değişimlerin geri dönüşümü imkansızken  epigenetik değişimler geri dönüştürülebilir. Bu avantaj, önerilen epigenetik modifikasyonların terapi uygulamalarında tercih edilmesi gerektiğini göstermektedir. DNA metiltransferaz ve histon deasetilaz epigenetik terapi çalışmalarının birinci hedefi haline gelmiştir. Bazı DNA metilasyon ve histon deasetilasyon inhibitörleri anti kanser ilaçları olarak Amerika’da Gıda ve İlaç İdaresi  tarafından onaylanmıştır. Bu nedenle, epigenetik hedeflerin kullanımları meme kanseri tedavisinde olumlu bir yaklaşım olarak büyük bir potansiyele sahip olduğuna inanılmaktadır.

Epigenetic Therapy in Breast Cancer

Cancer progression can be controlled by both genetic and epigenetic alterations. Only epigenetic alterations are reversible unlike the genetic alterations. This can be a important advantage to suggest that epigenetic modifications should be preferred in therapy applications. DNA methyltransferases and histone deacetylases have become the primary targets for studies in epigenetic therapy. The US Food and Drug Administration approved some DNA methylation inhibitors and histone deacetylation inhibitors as anti-cancer drugs. Therefore, the uses of epigenetic targets are believed to have great potential as a lasting favorable approach in treating breast cancer. 

___

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics. Ca-Cancer J Clin. 2008;58:71–96.
  • Kelly KM, Shah N, Shedlosky-Shoemaker R, Porter K, Agnese D. Living post treatment: Definitions of those with history and no history of cancer. J. Cancer Surv. 2011;5:158–66.
  • Taby R, Issa JP. Cancer epigenetics. Ca Cancer J Clin. 2010;60:376–92.
  • Alvarez RH. Present and future evolution of advanced breast cancer therapy. Breast Cancer Res. 2010;12(Suppl 2):S1.
  • Alvarez RH, Valero V, Hortobagyi GN. Emerging targeted therapies for breast cancer. J Clin Oncol. 2010;28:3366–79.
  • Esteller M, Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007;8:286–98.
  • Handel AE, Ebers GC, Ramagopalan SV. Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med. 2010;16:7–16.
  • Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.
  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al. Conversion of 5- methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.
  • Robertson AB, Dahl JA, Vågbø CB, Tripathi P, Krokan HE, Klungland A. A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 2011;39:55.
  • Voso MT, D’Alò F, Greco M, Fabiani E, Criscuolo M, Migliara G et al. Epigenetic changes in therapy- related MDS/AML. Chem Biol Interact. 2010;184:46-9.
  • Hatziapostolou M, Iliopoulos D. Epigenetic aberrations during oncogenesis. Cell Mol Life Sci. 2011;68:1681–702.
  • Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.
  • Schaefer M, Hagemann S, Hanna K, Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 2009;69:8127–32.
  • Chen ZX, Riggs AD. DNA methylation and demethylation in mammals. J Biol Chem. 2011;286:18347–53.
  • Gehring M, Reik W, Henikoff S. DNA demethylation by DNA repair. Trends Genet. 2009;25:82–90.
  • Cortez CC, Jones PA. Chromatin, cancer and drug therapies. Mutat Res. 2008;647:44–51.
  • Krawczyk B. Fabianowska-Majewska K. Alteration of DNA methylation status in K562 and MCF-7 cancer cell lines by nucleoside analogues. Nucleos Nucleot Nucleic Acids. 2006;25:1029–32.
  • Szyf M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol. 2009;49:243–63.
  • Chik F, Szyf M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis. 2011;32:224–32.
  • Mabaera R, Greene MR, Richardson CA, Conine SJ, Kozul CD, Lowrey CH. Neither DNA hypomethylation nor changes in the kinetics of erythroid differentiation explain 5-azacytidine’s ability to induce human fetal hemoglobin. Blood. 2008;111:411–20.
  • Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483-95.
  • Kuo HK, Griffith JD, Kreuzer KN. 5-Azacytidine induced methyltransferase-DNA adducts block DNA replication in vivo. Cancer Res. 2007;67:8248–54.
  • Gaffari A. Kemoterapotiklerin erkek üreme sistemi üzerindeki yan etkileri ve koruyucu stratejiler. Marmara Pharmaceutical Journal. 2013;17:73-92.
  • Li Q, Bartlett DL, Gorry MC, O’Malley ME, Guo ZS. Three epigenetic drugs up-regulate homeobox gene Rhox5 in cancer cells through overlapping and distinct molecular mechanisms. Mol Pharmacol. 2009;76:1072–81.
  • Qu Z, Fu J, Yan P, Hu J, Cheng SY, Xiao G. Epigenetic repression of PDZ-LIM domain-containing protein 2: Implications for the biology and treatment of breast cancer. J Biol Chem. 2010;285:11786–92.
  • Xu J, Zhou JY, Tainsky MA, Wu GS. Evidence that tumor necrosis factor-related apoptosis-inducing ligand induction by 5-Aza-2′-deoxycytidine sensitizes human breast cancer cells to adriamycin. Cancer Res. 2007;67:1203–11.
  • Mirza S, Sharma G, Pandya P, Ralhan R. Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol Cell Biochem. 2010;342:101–9.
  • Bolaman A. Miyelodisplastik sendromda hedefe yönelik tedaviler. Turkiye Klinikleri J Hematol- Special Topics. 2014;7:17-23.
  • Beumer JH, Parise RA, Newman EM, Doroshow JH, Synold TW, Lenz HJ et al. Concentrations of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine (FdCyd) and its cytotoxic metabolites in plasma of patients treated with FdCyd and tetrahydrouridine (THU) Cancer Chemother Pharmacol. 2008;62:363–68.
  • Gowher H, Jeltsch A. Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol Ther. 2004;3:1062–8.
  • Boothman DA, Briggle TV, Greer S. Exploitation of elevated pyrimidine deaminating enzymes for selective chemotherapy. Pharmacol Ther. 1989;42:65–88.
  • Özyürek H.A, Avcı G, Varol N. Gemsitabin uygulanan prostat kanseri hücre hatlarında oxaliplatin ve sisplatinin kemoterapötik etkilerinin belirlenmesi. Kocatepe Veterinary Journal. 2017;10:7-13.
  • Demirci Ucsular F, Uslu O, Tuksavul F, Gulpek M, Kos T, Guclu S.Z. Küçük hücreli akciğer kanserinde gemsitabin-sisplatin kemoterapisinin etkinliği. Solunum. 2005;3:115-22.
  • Öztürk N, Erbaycu A.E, Gülpek M, Tuksavul F, Uslu Ö, Güçlü S.Z, İleri ve lokal ileri evre küçük hücreli dışı akciğer kanserinde gemsitabin ve karboplatin kombinasyonu. Türk Onkoloji Dergisi. 2008;23:72-80.
  • Aydın D, Sarıaydın M, Ünsal M. Gemsitabine bağlı kutanoz toksisite gelişen küçük hücreli dışı akciğer kanseri. İzmir Göğüs Hastanesi Dergisi. 2011;1:51-5.
  • Sezgin V.C, Karabulut B, Uslu R, Şanlı U.A, Göker E. Daha önceden antrasiklin ve taksan tedavisi almış metastatik meme kanserli hastalarda gemsitabin tedavisi. Türk Hematoloji Onkoloji Dergisi. 2005;2:68-72.
  • Çoban Z.D, Avcu F, Ural A.U, Kuzhan O, Güran Ş, Gemsitabinin multipl myelom (RPMI-8226) ve Ig G plazma hücreli lösemi (ARH 77) hücre hatları üzerindeki sitotoksik etkisi. Gülhane Tıp Dergisi. 2012;54:263-6.
  • Altınel M, Arpalı E, Akıncı S, Sargın S, Yazıcıoğlu A. Gemsitabin-sisplatin kombinasyonu ile tedavi edilen ileri evre mesane tümörü hastalarının uzun dönem takip sonuçları. Turkiye Klinikleri J Urology. 2013;4:54-9.
  • Yoo CB, Valente R, Congiatu C, Gavazza F, Angel A, Siddiqui MA et al. Activation of p16 gene silenced by DNA methylation in cancer cells by phosphoramidate derivatives of 2′-deoxyzebularine. J Med Chem. 2008;51:7593–601.
  • Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat. 2010;120:581–92.
  • Balch C, Yan P, Craft T, Young S, Skalnik DG, Huang TH et al. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol Cancer Ther. 2005;4:1505– 14.
  • Schuebel K, Baylin S. In living color: DNA methyltransferase caught in the act. Nat Methods. 2005;2:736–38.
  • Brueckner B, Boy RG, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 2005;65:6305–11.
  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63:7563–70.
  • Moyers SB, Kumar NB. Green tea polyphenols and cancer chemoprevention: Multiple mechanisms and endpoints for phase II trials. Nutr Rev. 2004;62:204–11.
  • Chen D, Milacic V, Chen MS, Wan SB, Lam WH, Huo C et al. Tea polyphenols, their biological effects and potential molecular targets. Histol Histopathol. 2008;23:487–96.
  • Taşlı B, Çiçek F, Demirtaş G, Yalçın E, Çavuşoğlu K. Formaldehit toksisitesine karşı yeşil çay özütünün koruyucu etkisi: swiss albino farelerde genotoksik değerlendirme. Fen Bilimleri Dergisi (CFD). 2015;36:63-73.
  • Tosun İ, Karadeniz B. Çay ve çay fenoliklerinin antioksidan aktivitesi. OMÜ Ziraat Fakültesi Dergisi. 2005;20:78-83.
  • Kelleci F, Sipahi H, Charehsaz M, Aydın A. Yeşil çay ve ilaç etkileşimleri. Türkiye Klinikleri Literatür Eczacılık Bilimleri Dergisi. 2013;2:85-92.
  • Aydın S, Tokaç D, Başaran N, Başaran A, Effect of Epigallocatechin gallate on oxidative DNA damage in human lymphocytes. Türkiye Klinikleri Literatür Eczacılık Bilimleri Dergisi. 2015;12:19-28.
  • Piña IC, Gautschi JT, Wang GY, Sanders ML, Schmitz FJ, France D et al. Psammaplins from the sponge Pseudoceratina purpurea: Inhibition of both histone deacetylase and DNA methyltransferase. J Org Chem. 2003;68:3866–73.
  • Atadja P, Gao L, Kwon P, Trogani N, Walker H, Hsu M et al Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res. 2004;64:689–95.
  • Davis AJ, Gelmon KA, Siu LL, Moore MJ, Britten CD, Mistry N et al. Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks. Invest New Drugs. 2003;21:85–97.
  • Stewart DJ, Donehower RC, Eisenhauer EA, Wainman N, Shah AK, Bonfils C et al. A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Annu Oncol. 2003;14:766–74.
  • Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Mariscal I, Chavez A et al. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res. 2003;9:1596–603.
  • Zambrano P, Segura-Pacheco B, Perez-Cardenas E, Cetina L, Revilla-Vazquez A, Taja-Chayeb L et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer. 2005;5:44.
  • Karaca Ö, Ertekin T, Canöz Ö, Hacıalioğulları M, Ekinci N, Elmalı F, Ülger H. 1,2-dimetilhidrazin ile Balb/C türü farelerde deneysel kolon kanserinin indüklenmesi. Turkiye Klinikleri Journal of Medical Sciences. 2010;30:1015-24.
  • Çakan A, Erbaycu A, Dereli Ş, Özsöz A, Tüberküloz tedavisi ve hepatotoksisite. Tüberküloz ve Toraks Dergisi. 2000;48:259-65.
  • Temel M. Sitotoksik kemoterapötiklerin yirminci yüzyıldaki gelişimi. Türk Onkoloji Dergisi. 2015;30:96-10.
  • Torabi F, Dadkhah A, Dini S, Taghizadeh M, Malayeri M. Prevention and therapy of 1,2-dimethyl hydrazine induced colon carcinogenesis by Ferula assafoetida hydroalcoholic extract. Turkish Journal of Biochemistry. 2015;40:390-400.
  • Günbatar N, Bayıroğlu F. Sıçanlarda yüksek oranda doymuş yağlı diyet ile aralıklı beslemenin deneysel kolon gelişimi ve bazı serum inflamasyon markırları üzerine etkisi 1 adiponektin ve lipid metabolizması. Van Veterinary Journal. 2015;26:123-7.
  • Marsoni S, Damia G, Camboni G. A work in progress: the clinical development of histone deacetylase inhibitors. Epigenetics. 2008;3:164–71.
  • Fang MH, Ji XM. Histone modification and its application in therapy for hematologic malignancies. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2009;17:816–20.
  • Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A. 2010;107:20003–8.
  • Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell. 1978;14:105-13.
  • Cho HJ, Kim SY, Kim KH, Kang WK, Kim JI, Oh ST et al. The combination effect of sodium butyrate and 5-Aza-2′-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol. 2009;7:49.
  • İzmirli M. Epigenetik hastalıklar ve tedavi yaklaşımları. Hacettepe Tıp Dergisi. 2007;38:48-54.
  • Kocatürk S, Kasap H, Koç F, Güzel A. Spinal müsküler atrofi ve moleküler genetiği. Arşiv Kaynak Tarama Dergisi. 2012;21:1-26.
  • Man N, Humphrey E, Lam LT, Fuller HR, Lynch TA, Sewry CA et al. A two-site ELISA can quantify upregulation of SMN protein by drugs for spinal muscular atrophy. Neurology. 2008;71:1757–63.
  • Canpolat M, Bayram AK, Bahadır O, Per H, Gümüş H, Dundar M et al. Spinal musküler atrofi olgularının klinik özellikleri. Günel Pediatri. 2016;14:18-22.
  • Çetin M, Koçyiğit İ. Miyelodisplastik sendromlar. Turkiye Klinikleri J Int Med Sci. 2007;3:90-5.
  • Tokatlı A. Doğuştan metabolik hastalıklara tanısal yaklaşım. Güncel Pediatri. 2006;4:1-10.
  • Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S et al. Valproic aciddefines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001;20:6969–78.
  • Travaglini L, Vian L, Billi M, Grignani F, Nervi C. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int J Biochem Cell Biol. 2009;41:225–34.
  • Kim SH, Kang HJ, Na H, Lee MO. Trichostatin A enhances acetylation as well as protein stability of ERα through induction of p300 protein. Breast Cancer Res. 2010;12:22.
  • Li Y, Yuan YY, Meeran SM, Tollefsbol TO. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Mol Cancer. 2010;9:274.
  • Çaldıran Y. Hidroksamik asit hidrojellerinin hazırlanması, karakterizasyonu ve uranyum tutunmasında kullanımı (Yüksek lisans tezi). Sivas, Cumhuriyet Üniversitesi, 1997.
  • Çakmak A, Bazı substitue alifatik-aromatik amidlerin ve hidroksamik asitlerin in vitro mikrozomal metabolizmaları (Yüksek lisans tezi). İstanbul, Marmara Üniversitesi, 2007.
  • Ertürk A. İlaç etken maddesi içeren yeni hidroksamik asitlerin ve metal komplekslerinin sentezi, karakterizasyonu ve bazı biyolojik aktivitelerinin incelenmesi (Yüksek lisans tezi) Rize, Recep Tayyip Erdoğan Üniversitesi, 2013.
  • Çiçek E, Histon deasetilaz (HDAC) inhibitörü olan bazı hidroksamik asit türevlerinin bağlanma özelliklerinin moleküler kenetlenme yöntemiyle teorik olarak incelenmesi (Yüksek lisans tezi).Rize, Recep Tayyip Erdoğan Üniversitesi, 2017.
  • Yüksek EH, İnsan kolanjiokarsinoma hücre hattında (TFK-1) saha uygulamasının E-kaderin, N- kaderin ve vimentin genleri üzerine etkisinin araştırılması (Yüksek lisans tezi). Kayseri, Erciyes Üniversitesi, 2017.
  • Cihan C, Glioblastoma multiforme tümör hücrelerine karşı temozolomide ve suberoylanilide hydroxamic acid'in kombine/sinerjik tedavisinde apoptoz etkinliğinin araştirilmasi(Yüksek lisans tezi). İstanbul, Marmara Üniversitesi, 2012.
  • Ulutürk TD, Histon deasetilaz 8 özgül inhibitörlerin ın-vitro araştırılması (Yüksek lisans tezi). Ankara, Hacettepe Üniversitesi, 2010.
  • Stearns V, Zhou Q, Davidson NE. Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest. 2007;25:659–65.
  • Xu WS, Perez G, Ngo L, Gui CY, Marks PA. Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res. 2005;65:7832–39.
  • Bali P, Pranpat M, Swaby R, Fiskus W, Yamaguchi H, Balasis M et al. Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of her-2. Clin Cancer Res. 2005;11:6382–89.
  • Im JY, Park H, Kang KW, Choi WS, Kim HS. Modulation of cell cycles and apoptosis by apicidin in estrogen receptor (ER)-positive and-negative human breast cancer cells. Chem Biol Interact. 2008;172:235–44.
  • Park H, Im JY, Kim J, Choi WS, Kim HS. Effects of apicidin, a histone deacetylase inhibitor, on the regulation of apoptosis in H-ras-transformed breast epithelial cells. Int J Mol Med. 2008;21:325– 33.
  • Keles E, Lianeri M, Jagodziński PP. Apicidin suppresses transcription of 17β-hydroxysteroid dehydrogenase type 1 in endometrial adenocarcinoma cells. Mol Biol Rep. 2011;38:3355–60.
  • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 1993;268:22429–35.
  • Monneret C. Histone deacetylase inhibitors. Eur J Med Chem. 2005;40:1–13.
  • Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T et al. A synthetic inhibitor of histone deacetylase, MS-27–275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A. 2009;96:4592–97.
  • Liu Y, Liggitt D, Fong S, Debs RJ. Systemic co-administration of depsipeptide selectively targets transfection enhancement to specific tissues and cell types. Gene Ther. 2006;13:1724–30.
  • Srivastava RK, Kurzrock R, Shankar S. MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther. 2010;9:3254–66.
  • Marshall JL, Rizvi N, Kauh J, Dahut W, Figuera M, Kang MH et al. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J. Exp Ther Oncol. 2002;2:325–32.
  • Ray A, Okouneva T, Manna T, Miller HP, Schmid S, Arthaud L et al. Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate. Cancer Res. 2007;67:3767–76.
  • Xu J, Zhou JY, Wei WZ, Philipsen S, Wu GS. Sp1-mediated TRAIL induction in chemosensitization. Cancer Res. 2008;68:6718–26.
  • Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci U S A. 2001;98:87–92.
  • Riva L, Blaney SM, Dauser R, Nuchtern JG, Durfee J, McGuffey L et al. Pharmacokinetics and cerebrospinal fluid penetration of CI-994 (N-acetyldinaline) in the nonhuman primate. Clin Cancer Res. 2000;6:994–7.
  • Perabo FG, Müller SC. New agents for treatment of advanced transitional cell carcinoma. Annu Oncol. 2007;18:835–43.
  • Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB, Lee MJ et al. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res. 2004;64:316–21.
  • Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28:1069–78.
  • Kristensen LS, Nielsen HM, Hansen LL. Epigenetics and cancer treatment. Eur J Pharmacol. 2009;625:131–42.