Diyabetik Hayvan Modelleri ve Önemi

Diabetes mellitus günümüzde sıklığı, sebep olduğu komplikasyonlar ve tedavi maliyeti nedeniyle tüm dünyada önemi gittikçe artan bir sağlık problemi olarak karşımıza çıkmaktadır. Diğer bilimsel çalışmalarda olduğu gibi diyabet araştırmalarında da çeşitli hayvan modelleri kullanılmaktadır. Tip 1 ve tip 2 diabet patolojisinin altında yatan mekanizmaları ortaya çıkarmak, komplikasyonlarını önlemek ve yeni ilaç denemeleri için deneysel hayvan modelleri geliştirilmektedir. Birçok hayvan türünde kimyasal bazı ilaçlarla (streptozotosin ve alloksan), cerrahi olarak pankreasın çıkarılmasıyla (pankreatektomi) ve genetik yöntemlerle tip 1 ve tip 2 diyabet modeli oluşturulabilmektedir. Bu derlemede, diyabetik hayvan modelleri ve önemi hakkında son gelişmeler ışığında bilgiler verilmiştir.

Diabetic Animal Models and Its Importance

Diabetes mellitus is a growing health problem all over the world because of complications and cost of treatment. In diabetic studies animal models are frequently used, as in other scientific studies. As in other scientific studies, diverse animal models are used in diabetes research. Increasingly experimental animal models have been developed to elucidate the underlying mechanisms of type 1 and type 2 diabetes pathologies, to prevent complications, and to develop new drug trials. Many animal species can be modeled with chemical drugs (streptozotocin and alloxane), surgically removed pancreas (pancreatectomy), and genetic methods to model type 1 and type 2 diabetes. In this review, animal models of diabetes and information on the latest developments about prevention have been focused.

___

  • King A. The use of animal models in diabetes research. Br J Pharmacol. 2012;166:877-94.
  • G. Basta et al. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovascular Res. 2014;63:582-92.
  • Kumar V, Abbas A, Aster J. Robbins Basic Pathology, 10 th ed.. Philadelphia, Elsevier Limited, 2017.
  • Kitada M, Zhang Z, Mima A, King GL. Molecular mechanisms of diabetic vascular complications. J Diabetes Investig. 2010;1(3):77-89.
  • World Health Organization. The top ten causes of death. Available from http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed at 23.11.2017
  • Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The use of animal models in the study of diabetes mellitus. In Vivo. 2009;23:245-58.
  • Etuk EU. Animals models for studying diabetes mellitus. Agriculture and Biology Journal of North America. 2010;1:130-4.
  • Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005;22:359-70.
  • Williamson EM, Okpoko DT, Evans FJ. Pharmacological Methods in Phytotherapy Research. New York, Wiley, 1996.
  • Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK. Induction of type 1 diabetes mellitus in laboratory rats by use of alloxan; route of administration, pitfalls, and insulin treatment. Compr Med. 2004;54:252-7.
  • Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 2013;12:60.
  • Lawrence T. The nuclear factor NF-kappa B pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.
  • Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2007;43:1528-33.
  • Rerup CC. Drugs producing diabetes through damage of the insülin secreting cells. Pharmacol Rev. 1970;22:485-18.
  • Dolan ME. Inhibition of DNA repair as a means of increasing the antitumor activity of DNA active agents. Adv Drug Del Rev.1997;26:105-18.
  • Stauffacher W, Burr I, Gutzeit I, Beaven D, Veleminsky J, Renold AE. Streptozotocin diabetes: time course of irreversible β-cell damage; further observations on prevention by nicotinamide. Proc Soc Exp Biol Med. 1970;133:194-200.
  • Spinas GA. The dual role of nitric oxide in islets β-cells. News Physiol Sci. 1999;14:49–54.
  • Gul M, Laaksonen DE, Atalay M, Vider L, Hannien O. Effects of endurance training on tissue glutathione homoestasis and lipid peroxidation in streptozotocin-induced diabetic rats. Scand J Med Sci Sports. 2002;12:163-70.
  • Konrad RJ, Mikolaenko I, Tolar JF, Liu K, Kudlow JE. The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D- glucosaminidase. Biochem J. 2001;356:31-41.
  • Joo HL, Si HY, Jung MOH, Myung GL. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol. 2010;62:1-23.
  • Gajdošík A, Gajdošíkova A, Stefek M, Navarova J, Hozová R. Streptozotocin-induced experimental diabetes in male Wistar rats. Gen Physiol Biophys. 1999;18:54-62.
  • Ar'Rajab A, Ahrén B. Long-term diabetogenic effect of streptozotocin in rats. Pancreas. 1993;8:50- 7.
  • Pascoe WS, Storlien LH. Inducement by fat feding of basal hyperglycemia in rats with abnormal betacell function: model for study of etiology and pathogenesis of NIDDM. Diabetes. 1990;39:226- 33.
  • Pellegrino M, Christopher B, Michelle M. Gerard R. Development of a new model of type II diabetes in adult rats administered with streptozotocin and nicotinamide. Diabetes. 1998;47:224-30.
  • Valentovic MA, Alejandro N, Betts Carpenter A, Brown PI, Ramos K. Streptozotocin (STZ) diabetes enhances benzo(alpha)pyrene induced renal injury in Sprague Dawley rats. Toxicol Lett. 2006;164:214-20.
  • King A, Bowe J. Animal models for diabetes: Understanding the pathogenesis and finding new treatments. Biochem Pharmacol. 2016;99:1-10.
  • Joo HL, Si HY, Jung MOH, Myung GL. Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol. 2010;62:1-23.
  • The effect of fasting on haematology serum biochemistry parameters on STZ induced CD1 mice and diabetic db/db mice. J Drug Metab Toxicol. 2012;3:137.
  • Viana GS, Medeiros AC, Lacerda AM, Leal LK, Vale TG, Matos FJ. Hypoglycemic and anti-lipemic effects of the aqueous extract from Cissus sicyoides. BMC Pharmacol. 2004;8:4-9.
  • Szkudelski T. The mechanism of alloxan and streptozotocin action B cells of the rat pancreas. Physiol Res. 2001;50:536-46.
  • Antia B.S, Okokon J.E, Okon P.A. Hypoglyacaemic effect of aqueous leaf extract of Persea Americana (Mill) on alloxan induced diabetic rats. Indian J Pharmacol. 2005;37:325-6.
  • Lenzen S, Tiedge M, Jorns A, Munday R. Alloxan derivatives as a tool for the elucidation of the mechanism of the diabetogenic action of alloxan. InLessons from Animal Diabetes VI (Ed E Shafrir):113-22. Brighton, MA, Birkhauser,1996.
  • Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J. Med. Res. 2007;125:451–72.
  • Hayashi K, Kojima R, Ito M. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol Pharm Bull. 2006;29:1110-9.
  • Lukic ML, Stosic-Grujicic S, Shahin A. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev Immunol. 1998;6:119-28.
  • Awai M, Narasaki M, Yamonoi Y, Seno S. Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate: a model of experimental hemochromatosis. Am J Pathol. 1979;3:663-73.
  • Masiello P. Animal models of type11 diabetes with reduced pancreatic β-cell mass. Int J Biochem Cell Biol. 2006;38:873-93.
  • Choi SB, Park CH, Choi MK, Jun DW, Park S. Improvement of insulin resistance and insülin secreation by water extracts of Cordiceps militaris, phellinus linteus and paecilomyce tenuipes in 90% pancreatectomized rats. J Biotech Biochem. 2004;68:2257-64.
  • Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29:1-13.
  • Atkinson M, Leiter EH. The NOD mouse model of insulin dependent diabetes: as good as it gets? Nat Med. 1999;5:601-4.
  • Baxter AG, Duckworth RC. Models of type 1 (autoimmune) diabetes. Drug Discov Today Dis Models. 2004;4:451-5.
  • Crisá L, Mordes JP, Rossini AA. Autoimmune diabetes mellitus in the BB rat. Diabetes Metab Rev. 1992;8:4-37.
  • Yoon JW, Yoon CS, Lim HW, Huang QQ, Kang Y, Pyun KH et al. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in β cells. Science. 1999;284:1183-7.
  • Chung YH, Jun HS, Son M, Bao M, Bae HY, Kang Y et al. Cellular and molecular mechanisms for Kilham rat virus-induced autoimmune diabetes in DR-BB rats. J Immunol. 2000;165:2866-76.
  • McInerney MF, Pek SB, Thomas DW. Prevention of insulitis and diabetes onset by treatment with complete Freund’s adjuvant in NOD mice. Diabetes. 1991;40:715-25.
  • Sadelain MW, Qin HY, Sumoski W, Parfrey N, Singh B, Rabinovitch A. Prevention of diabetes in the BB rat by early immunotherapy using Freund’s adjuvant. J Autoimmun. 1990;3:671-80.
  • Elliott RB, Pilcher CC, Stewart A, Fergusson D, McGregor MA. The use of nicotinamide in the prevention of type 1 diabetes. Ann N Y Acad Sci. 1993;696:333-41.
  • Stride A, Hattersley AT. Different genes, different diabetes. Lessons from maturity-onset diabetes of the young. Ann Med. 2002;34:207-16.
  • Krook A, O’Rahilly S. Mutant insulin receptors in syndromes of insülin resistance. Baillieres Clin Endocrinol Metab. 1996;10:97-22.
  • Maassen JA, ‘T Hart LM, Van Essen E, Heine RJ, Nijpels G, Jahangir Tafrechi RS et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes. 2004;53:103-9.
  • 51. Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med. 1976;119:85-90.
  • Miralles F and Portha B. Early development of beta-cells is impaired in the gk rat model of type 2 diabetes. Diabetes. 2001;84-8.
  • Portha B. Transmitted beta-cell dysfunction as a cause for type 2-diabetes. Med Sci (Paris). 2003;19:847-853.
  • Gill-Randall RG, Adams D, Ollerton RL, Alcolado JC. Is human Type 2 diabetes maternally inherited? Insights from an animal model. Diabet Med. 2004;21:759-62.
  • Nakamura M, Yamada K. Studies on a diabetic (KK) strain of the mouse. Diabetologia. 1967;3:121- 21.
  • Ziv E, Shafrir E, Kalman R, Galer S, Bar-On H. Changing pattern of prevalence of insulin resistance in Psammomys obesus, a model of nutritionally induced type 2 diabetes. Metabolism. 1999;48:1549- 54.
  • Henson MS and O’Brien TD. Feline models of type 2 diabetes mellitus. ILAR J. 2006;47:234-42.
  • Bellinger DA, Merricks EP and Nichols TC. Swine models of type 2 diabetes mellitus: Insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J. 2006;47:243-58.
  • Van der Werf N, Kroese FG, Rozing J, Hillebrands JL. Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev. 2007;23:169-83.
  • Von Herrath MG, Filippi C, Coppieters K. How viral infections enhance or prevent type 1 diabetes- from mouse to man. J Med Virol. 2011;83:1672.
  • Gill-Randall RJ, Adams D, Lewis M, Alcolado JC. Type 2 diabetes mellitus; genes or intrauterine environment? An embryo transfer paradigm. Diabetologia. 2004;47:1354-9.