Antidepresan İlaçların Öğrenme ve Bellek Mekanizmas ına Etkileri

Depresyon yaşam kalitesini ve iş gücünü olumsuz yönde etkileyen psikiyatrik bir hastalıktır. Son yıllarda affektif hastalıkların oluşumunda, yapısal plastisite ve hücre yapılarında meydana gelen patolojik değişimlerin önemli olduğu konusundaki görüşler artmıştır. Bu görüşlerin odağında hipokampal alan bulunmaktadır. Hipokampusun epizodik bellek, ifadesel bellek, içerik ve uzaysal bellekte birincil önemi vardır. Uzun dönem potansiyalizasyon olarak bilinen ve öğrenme veya bellek mekanizmalarından biri olan "nöral plastisite" ilk olarak bu yapıda saptanmış ve incelenmiştir. Bu olgunun hafıza oluşumundaki temel nöronal mekanizma olduğuna inanılmaktadır. Depresyonda strese bağlı oluşan öğrenme-bellek mekanizmalarındaki olumsuz etkilerin antidepresan tedavi ile düzeltilebileceğine dair çalışmalar bulunmaktadır. Bu yazıda antidepresan ilaçların öğrenme-bellek mekanizmaları üzerine etkilerinin araştırıldığı çalışmalar incelenmiştir

Effects of Antidepressant Drugs on Learning and Memory Mechanism

Depression is a psychiatric disease that negatively affects quality of life and workforce. In recent years there is an increase in suggestions that the formation of affective disorders were caused by pathological changes influencing structural plasticity and cell structures. These studies primarily focused on the hippocampal area. Hippocampus is especially important in regards to episodic memory, expressive memory, content and spatial memory. “Neural plasticity”, known as long term potentiation of learning and memory mechanisms, was firstly identified and examined in this structure.This phenomenon is believed to be fundamental neuronal mechanisms involved in memory formation. Antidepressant treatment can correct negative effects of learning and memory mechanisms induced by stress. This study reviews studies focusing on effects of antidepressants on learning-memory mechanisms

___

  • 1. Kessler RC, Berglund P, Demler O. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593-602.
  • 2. Schildkraut JS. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965;122:509-22.
  • 3. de Quervain DJ, Roozendaal B, Nitsch RM, McGaugh JL, Hock C. Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nat Neurosci . 2000;3:313–4.
  • 4. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci . 2004;27:1–28.
  • 5. Bianchi M, Fone KFC, Azmi N, Heidbreder CA, Hagan JJ, Marsden CA. Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci. 2006; 24:2894-902.
  • 6. Savitz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmentaldegenerative divide.Neurosci Biobehav Rev. 2009;33:699-771.
  • 7. Rowland DC, Moser MB. Time finds its place in the hippocampus. Neuron. 2013;78:953-4.
  • 8. Songur A, Özen OA, Sarsılmaz M. Hipokampus. Türkiye Klinikleri J Med Sci. 2001;21:427-31.
  • 9. Yüksel N.Tianeptin: depresyon ve eşlik eden anksiyete tedavisindeki yeri. Klinik Psikiyatri Dergisi. 2004;4:25-31.
  • 10. Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S et al. Modulation of cortico-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry. 2004;61:34–41.
  • 11. Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry. 2001;158:899–905.
  • 12. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47-60.
  • 13. Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 2008;33:320–31.
  • 14. Bhagya V, Srikumar BN, Raju TR, Rao BS. Chronic escitalopram treatment restores spatial learning, monoamine levels, and hippocampal long-term potentiation in an animal model of depression. Psychopharmacolpgy (Berl). 2011;214:477-94.
  • 15. Gallagher M, Burwell R, Burchinal M. Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze. Behav Neurosci. 1993;107:618-26.
  • 16. Laurian G, Sarah H, Lauriston AK, Kishor B, Vivienne AR. Effect of exercise on learning and memory in a rat model of developmental stres. Metab Brain Dis. 2009;24:643–57.
  • 17. Kayaalp SO. Akılcı Tedavi Yönünden Tıbbi Farmakoloji. Ankara, Ertem Basım Ltd. Şti, 2012.
  • 18. Thompson PJ, Trimble MR. Non MAOI antidepressant drugs and cognitive functions: a review. Psychol Med. 1982;12:539-48.
  • 19. Guyton AC, Hall JE. Tıbbi Fizyoloji.11.baskı.(Çeviri Ed. HÇ Hayrünisa). İstanbul, Nobel Tıp Kitabevleri, 2001.
  • 20. Peker ÖG. Beyin Korteksi, Beynin Zihinsel İşlevleri, Örenme ve Bellek. In Tıbbi Fizyoloji. (Editörler HÇ Hayrünisa, BÇY Berrak):714-27. İstanbul, Nobel Tıp Kitapevleri,2007.
  • 21. Purves D. Memory. In Neuroscience 3rdedition.(Eds D Purves, GJ Augustine, D Fitzpatrick):733-53. Sinauer,Sinauer Associates Inc.,2004.
  • 22. Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem.2004;82:171–7.
  • 23. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science, 5th Edition. New York, McGrawHill, 2000.
  • 24. Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci. 1999;22:425-89.
  • 25. Amaral DG, Ishizuka N, Claiborne B. Neurons, numbers and the hippocampal network. Prog Brain Res.1990;83:1–11
  • 26. Moser MB, Rowland DC, Moser EI. Place cells, grid cells, and memory. Cold Spring Harb Perspect Biol.2015;7:a021808
  • 27. O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: why they fire when they fire. Exp Brain Res.1978;31:573-90.
  • 28. Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci . 2008;31:69-89.
  • 29. Rendeiro C, Spencer JP, Vauzour D, Butler LT, Ellis JA, Williams CM. The impact of flavonoids on spatial memory in rodents: from behaviour to underlying hippocampal mechanisms. Genes Nutr. 2009.
  • 30. Suzuki M, Hagino H, Nohara S, Zhou SY, Kawasaki Y, Takahashi T et.al. Male-specific volume expansion of the human hippocampus during adolescence. Cereb Cortex.2005;15:187–93.
  • 31. Tien RD, Felsberg GJ, Crain B. Normal anatomy of the hippocampus and adjacent temporal lobe: high-resolution fast spin-echo MR images in volunteers correlated with cadaveric histologic sections. AJR Am J Roentgenol.1992;159:1309-13.
  • 32. Wixted JT, Squire LR, Jang Y, Papesh MH, Goldinger SD, Kuhn JR et al. Sparse and distributed coding of episodic memory in neurons of the human hippocampus. Proc Natl Acad Sci U S A. 2014;111:9621-6.
  • 33. Sandkuehler J. Learning and memory in pain pathways. Pain. 2000;88:113-8.
  • 34. Saransaari P, Oja SS. Taurine release from the developing and ageing hippocampus: stimulation by agonists of ionotropicglutamatereceptors. Mech Ageing Dev. 1997;99:219-32.
  • 35. Lega B, Burke J, Jacobs J, Kahana MJ. Slow-theta-to-gamma phase-amplitude coupling in human hippocampus supports the formation of new episodic memories. Cereb Cortex .2014;26:268-78.
  • 36. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11-21.
  • 37. English JD, Sweatt JD. Activation of p42 mitogenactivated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 1996;271: 24329-32.
  • 38. Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron.1996;16:973-82
  • 39. Bading H, Greenberg ME. Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science.1991;253:912-4.
  • 40. Xia Z, Dudek H, Miranti CK, Greenberg ME. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci. 1996;16:5425-36.
  • 41. Stratton KR, Worley PF, Huganir RL, Baraban JM. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices. Proc Natl Acad Sci U S A. 1989;86:2489-2501.
  • 42. Roberson ED, English JD, Adams JP, Selcher JC, Kondratick C, Sweatt JD. The mitogen-activated protein kinase cascade couples PKA and PKC to CREB phosphorylation in area CA1 of hippocampus. J Neurosci. 1999;19:4337-48.
  • 43. Mesulam MM. Principles of Behavioral and Cognitive Neurology, 2nd edition. New York, Oxford University Press, 2000.
  • 44. Bear MF, Connors BW, Paradiso MA. Neuroscience: Exploring the Brain, 2nd edition. Baltimore, Williams &Wilkins.1996.
  • 45. Yurdakoş E. Lecture Notes on Neurophysiology: İstanbul, Nobel Tıp Kitabevleri,2001.
  • 46. Hanbauer I, Wink D, Osawa Y, Edelman GM, Gally JA. Role of nitric oxide in NMDA-evoked release of [3H]-dopamine fron striatal slices. Neuroreport. 1992;3:409-12.
  • 47. Schuman EM, Madison DV. A requirement for the intracellular messenger nitric oxide in long term potentiation. Science.1991;254:1503-6.
  • 48. Prendergast MA, Buccafusco JJ, Terry AV. Nitric oxide synthase inhibition impairs spatial navigation learning and induces conditioned taste aversion. Pharmacol Biochem Behav. 1997;57:347-52.
  • 49. FrazerA, Hensler JG, Siegel BW, Agranoff RW, Albers PB. Basic Neurochemistry, 5th edition. New York, Raven Press,1994.
  • 50. Barnes NM, Sharp TA. Review of central 5-HT receptors and their function. Neuropharmacology. 1999;38: 1083–152.
  • 51. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Associationofanxiety-related traits with apolymorphism in the serotonin transporter gene regulatory region. Science. 1996;274,1527–31.
  • 52. Bert B, Voigt JP, Kusserow H, Theuring F, Rex A, Fink H. Pharmacol Biochem Behav. 2009;92:76- 81.
  • 53. Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci U S A. 2000;97:14731-36.
  • 54. Wolff M, Costet P, Gross C, Hen R, Segu L, Buhot MC. Age-dependent effects of serotonin-1A receptor gene deletion in spatial learning abilities in mice. Brain Res Mol Brain Res. 2004;130:39- 48.
  • 55. Schmidt HD, Duman RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressivelike behavior. Behav Pharmacol. 2007;18:391-418.
  • 56. Lucassen PJ, Fuchs E, Czeh B. Antidepressant treatment with treatment reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry. 2004;55:789-96.
  • 57. Sala M, Perez J, Soloff P, di Nemi SU, Caverzasi E, Soares JC et al. Stress and hippocampus abnormalities in psychiatric disorders. Eur Neuropsychopharmacol. 2004;14:393–405
  • 58. Fuchs E, Czeh B, Kole MHP, Michaelis T, Lucassen PL. Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol .2004;14:481–90.
  • 59. Conrad CD, Galea LA, Kuroda Y, McEwen BS. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci . 1996;110:1321–34.
  • 60. de Quervain DJ, Roozendaal B, McGaugh J. Stress and glucocorticoids impair retrieval of longterm spatial memory. Nature .1998; 394:787-90.
  • 61. Diamond D, Park C, Heman K, Rose G. Exposing rats to a predator impairs spatial working memory in the radial arm watermaze. Hippocampus .1999;9:542–52.
  • 62. Duman RS. Depression: acase of neuronal life and death? Biol Psychiatry. 2004;56:140–5.
  • 63. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004;56:640–50.
  • 64. Vyas A, Jadhav S, Chattarji S. Prolonged behavioral stres enhances synaptic connectivity in the basolateral amygdala. Neuroscience. 2006;143:387–93.
  • 65. Vyas A, Pillai AG, Chatarji S. Recovery after chronic stres fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience.2004;128: 667–73.
  • 66. MacQueen GM, Campbell S, McEwen BS, Macdonald K,Amano S, Joffe RT et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A. 2003;100:1387–92.
  • 67. Stahl SM. Temel Psikofarmakoloji Nörobilimsel Temeli ve Pratik Uygulamaları,2. Baskı . İstanbul, Yelkovan Yayıncılık, 2003.
  • 68. Yulug B, Ozan E, Gonul AS, Kilic E. Brain-derived neurotrophic factor, stres and depression: a mini review. Brain Res Bull. 2009;78:267–9.
  • 69. Shirayama Y, Chen AC, Nakagawa S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22:3251-61.
  • 70. Karege F, Perret G, Bandolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressive patients. Psychiatry Res. 2002;109:143-8.
  • 71. Karege F, Bandolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry .2005;57:1068-72.
  • 72. Aydemir C, Yalcin ES, Aksaray S, Kisa C, Yildirim SG, Uzbay T et al. Brainderived neurotrophic factor (BDNF) changes in the serum of depressed women. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1256-60.
  • 73. Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive patients. J Affect Disord. 2007;101:239-44.
  • 74. Kim YK, Lee HP, Won SD, Park EY, Lee HY. Low plasma BDNF is associated with suicidal behavior in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:78–85.
  • 75. Deveci A, Aydemir O, Taksin O, Taneli F, Esen-Danaci A. serum BDNF levels in suicide attempters related to psychosocial stressors: a comparative study with depression. Neuropsychobiology. 2007;56:93-7.
  • 76. Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brainderived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry.2005;29:261-5.
  • 77. Gonul AS, Akdeniz F, Taneli F, Ozlem D, Eker C, Vahip S. Effect of treatment on serum brainderived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255:381-6.
  • 78. Huang TL, Lee CT, Liu YL. Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J Psychiatr Res. 2008; 42:521-5.
  • 79. Zhang J, Snyder SH. Nitircoxide in nervous system. Annu Rev Pharmacol Toxicol.1995;35:213-33.
  • 80. Bhagya V,Srikumar BN, Raju TR,Shankaranarayana Rao BS. The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression. J Neurosci Res.2015;93:104-20.
  • 81. Han J,Wang LU, Bian H,Zhou X, Ruan C. Effects of paroxetine on spatial memory function and protein kinase C expression in a rat model of depression.Exp Ther Med.2015;10:1489-92. 82. Soczynska JK , Ravindran LN,Styra R, McIntyre RS,Cyriac A, Manierka MS et al. The effect of bupropion XL and escitalopram on memory and functional outcomes in adults with major depressive disorder: results from a randomized controlled trial.Psychiatry Res. 2014;220:245-50.
  • 83. Bhagya V, Srikumar BN, Raju TR, Rao BS. Chronic escitalopram treatment restores spatial learning, monoamine levels,and hippocampal long-term potentiation in an animal model of depression. Psychopharmacology. 2011;214:477-94
  • 84. Aydın L,İlhan Ş, Tekindal A.Gündoğan Ü. Stresli ve stressiz sıçanlarda fluoksetin hidroklorür kullanımının öğrenme ve bellek üzerine etkileri. Genel Tıp Dergisş.2011;21:137-43
  • 85. Uzbay T.Agomelatin genel bilgiler farmakolojisi ve kullanım güvenliği. Klinik Psikiyatri Dergisi. 2012;15:9-19.
  • 86. Conboy L, Tanrikut C, Zoladz PR, Campbell AM, Park CR, Gabriel C et al. The antidepressant agomelatine blocks the adverse effects of stress on memory and enables spatial learning to rapidly increase neural cell adhesion molecule (NCAM) expression in the hippocampus of rats. Int J Neuropsychopharmacol . 2009;12:329–41.
  • 87. Bertaina-Anglade V, Drieu-La-Rochelle C, Mocaer E, Seguin L. Memory facilitating effects of agomelatine in the novel object recognition memory paradigm in the rat. Pharmacol Biochem Behav.2011;98:511-7.
  • 88. Harmer CJ, de Bodinat C, Dawson GR, Dourish CT, Waldenmaier L, Adams S et al. Agomelatine facilitates positive versus negative affective processing in healthy volunteer models. J Psychopharmacol. 2011;25:1159-67.
  • 89. Ladurelle N, Gabriel C, Viggiano A, Mocaër E, Baulieu EE, Bianchi M. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC. Psychopharmacology . 2012;221:493-509.
  • 90. Meneses A. Tianeptine 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task. Neurosci Biobehav Rev.2002;26:309-19.
  • 91. Morris RGM, Kelly S, Burney D, Anthony T, Boyer PA, Spedding M.Tianeptine and its enantiomers: effects on spatial memory in rats with medial septum lesions. Neuropharmacology. 2001;41:272- 81.
  • 92. Moskal JR, Burgdorf JS, Stanton PK, Kroes RA, Disterhoft JF, Burch RM et al. The development of Rapastinel (formerly GLYX-13): a rapid acting and long lasting antidepressant. Curr Neuropharmacol. 2017;15:47-56.
  • 93. Burgdorf J,Zhang XL,Weiss C, Gross A, Boikess SR, Kroes RA et al. The long-lastingantidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortexand hippocampus. Neuroscience.2015;308:202-11.
  • 94. Dale E, Zhang H, Leiser SC, Xiao Y, Lu D, Yang CR et al. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus. J Psychopharmacol. 2014;28:891-902.
  • 95. Mork A, Montezinho LP, Miller SC, Trippodi-Murphy C, Plath N, Ni Y et al. Vortioxetine (Lu AA21004), a novel multimodal antidepressant, enhances memory in rats. Pharmacol Biochem Behav.2013;105:41-50.
  • 96. Greer TL, Sunderajan P, Grannemann BD, Kurian BT, Trivedi MH. Does duloxetine improve cognitive function independently of its antidepressant effect in patients with major depressive disorderandsubjective reports of cognitive dysfunction? Depress Res Treat. 2014;2014:627863.
  • 97. Joyce LW, June N, Carina H, Wayne B, Michael J, Richard GM et al. Chronic treatment with the antidepressant amitriptyline prevents impairments in water maze learning in aging rats. J Neurosci. 2002;22:1436-42.
  • 98. Frank M, Braszko JJ. Moclobemide enhances aversively motivated learning and memory in rats. Pol J Pharmacol.1999;51:497-503.
  • 99. Getova D, Dimitrova D, Roukounakis I. Effects of the antidepressant drug moclobemide on learning and memoryin rats. Methods Find Exp Clin Pharmacol.2003;25:811-5.