Monitoring of growth and biochemical composition of Dunaliella salina and Dunaliella polymorpha in different photobioreactors

In this study, the isolation of green algae were collected from two different stations of Aegean Sea and Seyfe Lake. The molecular identification of Dunaliella species using their 18S ribosomal DNA genes were sequenced and investigated with the BLAST program in the NCBI database. After the morphological and molecular identification, two different Dunaliella species were deposited in Ege University Microalgae Culture Collection. D. salina and D. polymorpha cells were firstly produce in both bubble column to monitor the growth profiles and then the species were cultivated in bubble column and stirred column photobioreactors (PBRs) under both high light intensity and different mixing conditions to investigate the total protein, carbohydrate, lipids and carotenoid concentrations. Moreover, this study aims to evaluate the production of β-carotene using two different PBRs. As a result of this study, D. salina in stirred PBR obtained the highest lipid (334.79 ±0.02 mg/L), total carotenoid (96.7 ±0.02 mg/L), and β-carotene content (21.18 ±0.03 µg/mL), while the maximum dry cell mass of 0.906 g/L was reached by D. polymorpha in bubble column PBR. The aim of this study was to investigate the nutritional values and β-carotene content of Dunaliella salina and D. polymorpha isolated from Turkey.

___

Abaci-Bayar, A., Yilmaz, K., Bayar Y. (2020). Orta Kızılırmak bölümündeki Seyfe Gölü sulak alanında oluşan toprakların bazı özelliklerinin incelenmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 677-692. https://doi.org/10.18185/erzifbed.695963

Ahmed, R.A., He, M., Aftab, R.A., Zheng, S., Nagi, M., Bakri, R., Wang, C. (2017). Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Scientific Reports, 7(1), 1-10. https://doi.org/10.1038/s41598-017-07540-x

Ajala, S., Alexander, M.L. (2020). Evaluating the effects of agitation by shaking, stirring and air sparging on growth and accumulation of biochemical compounds in microalgae cells. Biofuels, 1, 11. https://doi.org/10.1080/17597269.2020.1714161

Andersen, R.A. (2005). Algal Culturing Techniques. Elsevier Academic Press, New York. ISBN: 0-12-088426-7

Bligh, E.G., Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099

Bonnefond, H., Moelants, N., Talec, A., Mayzaud, P., Bernard, O., Sciandra, A. (2017). Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnology for Biofuels and Bioproducts, 10(1), 1-10. https://doi.org/10.1186/s13068-017-0713-4

Borowitzka, M.A., Siva, C.J. (2007). The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19(5), 567-590. https://doi.org/10.1007/s10811-007-9171-x

Borowitzka, M.A., Borowitzka, L.J., Kessly, D. (1990). Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology, 2(2), 111-119. https://doi.org/10.1007/BF00023372

Carvalho, A.P., Meireles, L.A., Malcata, F.X. (2008). Microalgal reactors: a review of enclosed system designs and performances. Biotechnology Progress, 22, 1490-1506. https://doi.org/10.1021/bp060065r

Colusse, G. A., Mendes, C.R.B., Duarte, M.E.R., de Carvalho, J.C., Noseda, M.D. (2020). Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina. Biotechnology Reports, 27, e00508. https://doi.org/10.1016/j.btre.2020.e00508

da Silva, M.R.O.B., Moura, Y.A.S., Converti, A., Porto, A.L.F., Marques, D.D.A.V., Bezerra, R.P. (2021). Assessment of the potential of Dunaliella microalgae for different biotechnological applications: a systematic review. Algal Research, 58, 102396. https://doi.org/10.1016/j.algal.2021.102396

Day, J.G., Stacey, G. (2007). Cryopreservation and Freeze-Drying Protocols. Humana Press. https://doi.org/10.1007/978-1-59745-362-2

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analiytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017

Elleuch, F., Hlima, H.B., Barkallah, M., Baril, P., Abdelkafi, S., Pichon, C., Fendri, I. (2019). Carotenoids overproduction in Dunaliella sp.: transcriptional changes and new insights through lycopene β cyclase regulation. Applied Sciences, 9(24), 5389. https://doi.org/10.3390/app9245389

Emami, K., Hack, E., Nelson, A., Brain, C.M., Lyne, F.M., Mesbahi, E., Day, J.G., Caldwell, G.S. (2015). Proteomic-based biotyping reveals hidden diversity within a microalgae culture collection: an example using Dunaliella. Scientific Reports, 5(1), 1-15. https://doi.org/10.1038/srep10036

Gharajeh, N.H., Valizadeh, M., Dorani, E., Hejazi, M.A. (2020). Biochemical profiling of three indigenous Dunaliella isolates with main focus on fatty acid composition towards potential biotechnological application. Biotechnology Reports, 26, e00479. https://doi.org/10.1016/j.btre.2020.e00479

Gomez, P.I., Barriga, A., Cifuentes, A.S., Gonzalez, M.A. (2003). Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biological Research, 36(2), 185-192. https://doi.org/10.4067/S0716-97602003000200008

Hosseini Tafreshi, A., Shariati, M. (2009). Dunaliella biotechnology: methods and applications. Journal of Applied. Microbiology, 107(1), 14-35. https://doi.org/10.1111/j.1365-2672.2009.04153.x

Ishika, T., Bahri, P.A., Laird, D.W., Moheimani, N.R. (2018). The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. Journal of Applied Phycology, 30(3), 1453-1464. https://doi.org/10.1007/s10811-017-1377-y

Jesus, S.S., Filho, R.M. (2010). Modeling growth of microalgae Dunaliella salina under different nutritional conditions. American Journal of Biochemistry and Biotechnology, 6, 279-283. https://doi.org/10.3844/ajbbsp.2010.279.283

Kanamoto, A., Kato, Y., Yoshida, E., Hasunuma, T., Kondo, A. (2021). Development of a method for fucoxanthin production using the Haptophyte marine microalga Pavlova sp. OPMS 30543. Marine Biotechnology, 23(2), 331-341. https://doi.org/10.1007/s10126-021-10028-5

Kendirlioglu, G., Agirman, N., Cetin, A.K. (2015). The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris. Turkish Journal of Science and Technology, 10(2), 7-10.

Khadim, S.R., Singh, P., Singh, A.K., Tiwari, A., Mohanta, A., Asthana, R.K. (2018). Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting. Bioresource Technology, 270, 20-29. https://doi.org/10.1016/j.biortech.2018.08.071

Krienitz, L., Bock, C., Nozaki, H., Wolf, M. (2011). SSU rRna gene phylogeny of morphospecies affiliated to the bioassay alga “Selenastrum capricornutum” recovered the polyphyletic origin of crescent‐shaped Chlorophyta (1). Journal of Phycology, 47(4), 880-893. https://doi.org/10.1111/j.1529-8817.2011.01010.x

Kunjapur, A.M., Eldridge, R.B. (2010). Photobioreactor design for commercial biofuel production from microalgae. I&EC Research, 49(8), 3516-3526. https://doi.org/10.1021/ie901459u

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. https://doi.org/10.1007/s11418-019-01364-x

Muhaemin, M., Kaswadji, R.F. (2010). Biomass nutrient profiles of marine microalgae Dunaliella salina. Jurnal Penelitian Sains, 13(3), 13314-13369.

Olmos, J., Paniagua, J., Contreras, R. (2000). Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Letters in Applied Microbiology, 30(1), 80-84. https://doi.org/10.1046/j.1472-765x.2000.00672.x

Oren, A. (2005). A hundred years of Dunaliella research: 1905–2005. Aquatic Biosystems, 1(1), 1-14. https://doi.org/10.1186/1746-1448-1-2

Ricardo, V.-Y., Giffard-Mena, I., Cruz-López, R., García-Mendoza, E., Stephano-Hornedo, J.L. (2018). Characterization of a new Dunalliela salina strain isolated from San Quintin, Baja California (México) producer of lipids, pigments and micronutrients. CICIMAR Oceánides, 33(2), 1- 10. https://doi.org/10.37543/oceanides.v33i2.212

Sahin, M.S., Khazi, M.I., Demirel, Z., Dalay, M.C. (2019). Variation in growth, fucoxanthin, fatty acids profile and lipid content of marine diatoms Nitzschia sp. and Nanofrustulum shiloi in response to nitrogen and iron. Biocatalysis Agricultural Biotechnology, 17, 390-398. https://doi.org/10.1016/j.bcab.2018.12.023

Sener, N., Demirel, Z., Imamoglu, E., Dalay, M. (2022). Optimization of Culture Conditions for Total Carotenoid Amount Using Response Surface Methodology in Green Microalgae/Ankistrodesmus convolutus. Aquatic Sciences and Engineering, 37(1), 29-37. https://doi.org/10.26650/ASE2020785091

Ueno R., Urano N., Suzuki M. (2003). Phylogeny of the non-photosynthetic green micro-algal genus Prototheca (Trebouxiophyceae, Chlorophyta) and related taxa inferred from SSU and LSU ribosomal DNA partial sequence data. FEMS Microbiology Letters, 223(2), 275-280. https://doi.org/10.1016/S0378-1097(03)00394-X

Wasanasathian A., Peng C.A. (2007). Bioprocessing for Value-Added Products from Renewable Resources. In: S. -T. Yang (Ed.), Algal photobioreactor for production of lutein and zeaxanthin 19 (pp. 491-505), Elsevier Science. https://doi.org/10.1016/B978-044452114-9/50020-7

Yuan, Y., Li, X., Zhao, Q. (2019). Enhancing growth and lipid productivity in Dunaliella salina under high light intensity and nitrogen limited conditions. Bioresource Technology Reports, 7, 100211. https://doi.org/10.1016/j.biteb.2019.100211

Zarandi-Miandoab L., Hejazi M.A., Bagherieh-Najjar M.B., Chaparzadeh N, (2019). Optimization of the four most effective factors on β-carotene production by Dunaliella salina using response surface methodology. Iranian Journal of Pharmaceutical Sciences, 18(3), 1566.
Aquatic Research-Cover
  • ISSN: 2618-6365
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2018
  • Yayıncı: ScientificWebJournals (SWJ) Özkan Özden
Sayıdaki Diğer Makaleler

The responses of cholinergic system in the brain tissue of Van Fish (Alburnus tarichi) exposed to antifungal tebuconazole compound toxicity

Aslı ÇİLİNGİR YELTEKİN

Phylogenetic analysis of Luciobarbus Heckel, 1843 and Barbus Cuvier & Cloquet, 1816 species in the Euphrates River (Turkey) based on mtDNA COI gene sequences

Arif PARMAKSIZ, Elif KORKMAZ, Dilara ULUSAL, Necmettin DOĞAN

Monitoring of growth and biochemical composition of Dunaliella salina and Dunaliella polymorpha in different photobioreactors

Zeliha DEMİREL

Effects of inorganic nutrient enrichment on the carrageenan yield, growth, and ice-ice disease occurrence of red alga Kappaphycus striatus

Jurmin SARRİ, Yusop ABDULMUTALIB, Melapearl MOHAMMAD TILKA, ERTUĞRUL TERZİ, Albaris TAHİLUDDİN

Biological indicator of warming events: Presence of the Cortez angelfish Pomacanthus zonipectus at temperate conditions of Bahía de San Quintín, Baja California, México

Jorge A. ROSALES-CASİAN

Dose-dependent cytotoxic and proliferative effects of Microcystis aeruginosa extract and its fractions on human endothelial cells

Seda KUŞOĞLU GÜLTEKİN, ELİF MERTOĞLU, Kaan YILANCIOĞLU, Nazlı ARDA

Crustacean and Protozoan parasites of some Cyprinid fish living in the Murat River (Bingöl-Türkiye), with new host records

Nimetullah KORKUT, Mustafa KOYUN

Vultivation of Arthrospira platensis in heterotrophic and mixotrophic conditions with different concentrations of whey

Zülfiye VELİOĞLU TOSUNER, Raziye ÖZTÜRK ÜREK