Toxicological Impact of Pentachlorophenol on the Hepatic and Reproductive Activity of the Stinging Catfish Heteropneustes fossilis

Toxicological Impact of Pentachlorophenol on the Hepatic and Reproductive Activity of the Stinging Catfish Heteropneustes fossilis

Pentachlorophenol (PCP) is an organochlorine compound used widely as a pesticide,disinfectant, and biocide. Its LC50 was determined, which is 400 µg L-1in a bioassaysystem, and toxicity was evaluated in female Heteropneustes fossilis exposed to 1/25th(16 µg L-1) and 1/10th (40 µg L-1) LC50 concentrations for 28 days in previtellogenic andlate vitellogenic phases. Behavioural, metabolic and reproductive parameters wereevaluated. The exposed fish were put to high stress judging from the significantincrease in plasma cortisol and erratic behaviours. The body mass of the liver and ovarydecreased significantly. Various histopathological anomalies were noticed in the liverand ovary and were attributed to altered steroid biosynthesis and metabolism judgingfrom increased estradiol-17β and testosterone levels in plasma and their decreasedlevels in the ovary and liver. The results show that the toxicant can act at differentlevels to produce behavioural, physiological and pathological changes affectingmetabolism and reproduction.

___

  • Bernet, D., Schmidt, H., Meier, W., Burkhardt-Holm, P., & Wahli, T. (1999). Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, 22(1), 25-34.
  • https://dx.doi.org/10.1046/j.1365-2761.1999.00134.x Chaube, R., Mishra, S., & Singh, R.K. (2010). In vitro effects of lead nitrate on steroid profilesin the postvitellogenic ovary of the catfish Heteropneustes fossilis. Toxicology in Vitro, 24(7), 1899-1904. https://dx.doi.org/10.1016/j.tiv.2010.07.021
  • Cheng, Y., Ekker, M., & Chan, H. (2015). Relative developmental toxicities of pentachloroanisole and pentachlorophenol in a zebrafish model (Danio rerio). Ecotoxicology & Environmental Safety, 112, 7–14. https://dx.doi.org/ 10.1016/j.ecoenv.2014.10.004
  • Cooper, G.S., & Jones, S. (2008). Pentachlorophenol and cancer risk: focusing the lens on specific Chlorophenols and contaminants. Environmental Health Perspectives, 116, 1001-1008.https://dx.doi.org: 10.1289/ehp.11081
  • Dede, E.B., & Kaglo, H.D. (2001) Aqua-toxicological effects of water soluble fractions (WSF)of diesel fuel on O. niloticus fingerlings. Journal of Applied Sciences and Environmental Management, 5, 93-96. https://dx.doi.org/10.4314/jasem.v5i1.54965
  • Farah, M., Ateeq, B., Ali, M., Sabir, R., & Ahmad, W. (2004). Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms. Chemosphere, 55, 257–265. https://dx.doi.org/10.1016/j.chemosphere.2003.10.063
  • Ge, T., Han, J., Qi, Y., Gu, X., Ma, L., Zhang, C., … Huang, D. (2017). The toxic effects of chlorophenols and associated mechanisms in fish. Aquatic Toxicology, 184, 78–93. https://dx.doi.org /10.1016/j.aquatox.2017.01.005
  • Hanson, R., Dodoo, D.K., Essumang, D.K., Blay, J., & Yankson, K. (2007). The effect of some selected pesticides on the growth and reproduction of fresh water Oreochromis niloticus, Chrysicthysnigrodigitatus and Clarias gariepinus. Bulletin of Environmental Contamination & Toxicology, 79, 544-547. https://dx.doi.org/10.1007/s00128-007-9279-3.
  • Jin, X., Zha, J., Xu, Y., Giesy, J., & Wang, Z. (2012). Toxicity of pentachlorophenol to native aquatic species in the Yangtze River. Environmental Science and Pollution Research, 19, 609-618. https://dx.doi.org/ 10.1007/s11356-011-0594-1
  • Kumari, R., Singh, R.K., Khanna, Y.P., & Sharma, B. (1997). Carbofuran induced stress mediated syndromes in Clarias batrachus. Proceedings of International Conference on Industrial Pollution Control Technology (pp. 113–119). India.
  • Morales, M., Martínez-Paz, P., Martín, R., Planelló, R., Urien, J., Martínez-Guitarte, J.L., & Morcillo, G. (2014). Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae. Aquatic Toxicology, 157, 1–9. http://dx.doi.org/10.1016/j.aquatox.2014.09.009
  • Sawle, A.D., Wit, E., Whale, G., & Cossins, A.R. (2010). An information-rich alternative, chemicals testing strategy using a high definition toxicogenomics and zebrafish (Danio rerio) embryos. Toxicological Sciences, 118, 128– 139.https://dx.doi.org/10.1093/toxsci/kfq237
  • Shelley, L., Balfry, S., Ross, P., & Kennedy, C. (2009). Immunotoxicological effects of a sub-chronic exposure to selected current-use pesticides in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 92, 95- 103.https:/dx./doi.org/10.1016/j.aquatox.2009.01.005
  • Van der Oost, R., Beyer, J., & Vermeulen, N.P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology &Pharmacology, 13(2), 57-149. https://dx.doi.org/10.1016/S1382-6689(02)00126-6
  • Yin, D., Zhu, H., Hu, P., & Zhao, Q. (2009). Genotoxic effect of 2, 4, 6-trichlorophenol on P53 gene in zebrafish liver. Environmental Toxicology & Chemistry, 28, 603– 608.https://dx.doi.org/10.1897/08-317.1
  • Yin, D., Gu, Y., Li, Y., Wang, X., & Zhao, Q. (2006). Pentachlorophenol treatment in vivo elevates point mutation rate in zebrafish p53 gene. Mutation ResearchGenetic Toxicology & Environmental Mutagenesis, 609, 92-101. https://dx.doi.org/10.1016/j.mrgentox.2006.06.025
  • Zha, J., Wang, Z., Wang, N., & Ingersoll, C. (2007). Histological alternation and vitellogenin induction in adult rare minnow (Gobiocypris rarus) after exposure tethynylestradiol and nonylphenol. Chemosphere, 66, 488-495. https://dx.doi.org/10.1016/j.chemosphere.2006.05.071
  • Zhao, B., Yang, J., Liu, Z., Xu, Z., Qiu, Y., & Sheng, G. (2006). Joint anti-estrogenic effects of PCP and TCDD in primary cultures of juvenile goldfish hepatocytes using vitellogenin as a biomarker. Chemosphere, 65, 359- 364.https://dx.doi.org/10.1016/j.chemosphere.2006.02 .019
  • Zhang, X., Zhang, X., Qi, Y., Huang, D., & Zhang, Y. (2014). 2, 4- dichlorophenol induces ER stress-mediated apoptosis via eIF2 dephosphorylation in vitro. Environmental Toxicology, 31, 245-255. https://dx.doi.org/10.1002/tox.22039