Analysis of Aquaponic-Recirculation Aquaculture System (A - Ras) Application in the Catfish (Clarias gariepinus) Aquaculture in Indonesia

Analysis of Aquaponic-Recirculation Aquaculture System (A - Ras) Application in the Catfish (Clarias gariepinus) Aquaculture in Indonesia

Water quality and waste management are significant problems for aquaculture in Indonesia, including catfish (Clarias gariepinus) aquaculture. A combination of Aquaponics Systems and Recirculating Aquaculture Systems (A-RAS) has been developed to address this problem. This study analyzed A-RAS application for catfish (Clarias gariepinus) aquaculture by comparing water quality and production indicators between A-RAS and conventional methods. The results show that temperature, pH, dissolved oxygen, total organic matter, ammonia, nitrate and nitrite in A-RAS technology were 28.0-30.0°C, 6.5-7.9, 3.8-7.8 mg/L, 18.54-24.97 mg/L, 0.12- 0.28 mg/L, 0.12-0.13 mg/L, and 0.04-0.13 mg/L, respectively. Survival Rate, Feed Conversion Ratio, and harvest in A-RAS application were 85.5%, 1.1, and 26 kg/m³, respectively. A-RAS technology can maintain water quality to be reused in cultivation and increase yields by about 13%. Besides, water spinach can be an additional income for farmers.

___

  • Ahmed, N., & Thompson, S. (2019). The blue dimension of aquaculture: a global synthesis. Science of The Total Environment, Netherlands, 652(1), 851–861.
  • https://doi.org/10.1016/j.scitotenv.2018.10.163 Azaria, A., & Rijn, J. V. (2018), Off-flavor compounds in recirculating aquaculture systems (RAS): production and removal processes. Aquacultural Engineering, USA, 83(1), 57–64.
  • https://doi.org/10.1016/j.aquaeng.2018.09.004 Badiola, M., Basurko, O.C., Piedrahita, R., Hundley, P., & Mendiola, D., (2018). Energy use in recirculating aquaculture system (RAS): a review. Aquacultural Engineering, USA, 81(1), 57–70.
  • https://doi.org/10.1016/j.aquaeng.2018.03.003 Brooks, B. W., & Conkle, J. L. (2019). Commentary: perspective on aquaculture, urbanization and water quality. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Netherlands, 217(1), 1–4. https://doi.org/10.1016/j.cbpc.2018.11.014
  • Ekasari, J., Suprayudi, M. A., Wiyoto, W., Hazanah, R. F., Lenggara, G. S., Sulistiani, R., Alkahfi, M., & Zairin, M. (2016). Biofloc technology application in African catfish fingerling production: The effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture. Netherlands, 464(1), 349–356. https://doi.org/10.1016/j.aquaculture.2016.07.013
  • Froehlich, H. E., Gentry, R. R., & Halpem, B. S. (2017). Conservation aquaculture: shifting the narrative and paradigm of aquaculture's role in resource management. Biological Conservation, Netherlands, 215(1), 162–168. https://doi.org/10.1016/j.biocon.2017.09.012
  • Gorito, A. M., Ribeiro, A. R., Gomes, C. R., Marisa, C., Almedia, R., & Silva, A. M. T. (2018). Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents. Science of The Total Environment, Netherlands, 644(1), 1171–1180. https://doi.org/10.1016/j.scitotenv.2018.06.371
  • Granada, L., Lopes, S., Novais, S. C., & Lemos, M. F. L. (2018). Modelling integrated multi-trophic aquaculture: optimizing a three trophic level system. Aquaculture, Netherlands, 495(1), 90–97. https://doi.org/10.1016/j.aquaculture.2018.05.029
  • Groenveld, T., Kohn, Y. Y., Gross, A., & Lazarovitch, N. (2019). Optimization of nitrogen use efficiency by means of fertigation management in an integrated aquacultureagriculture system. Cleaner Production, 212(1), 401– 408. https://doi.org/10.1016/j.jclepro.2018.12.031
  • Henriksson, P. J. G., Tran, N., Mohan, C. V., Chan, C. Y., Rodriguez, U.-P., Suri, S., Mateos, L. D., Utomo, N. B. P., Hall, S., & Phillips, M. J. (2017). Indonesian aquaculture futures – Evaluating environmental and socioeconomic potentials and limitations. J. Cleaner Prod. Netherlands, 162(1), 1482–1490. https://doi.org/10.1016/j.jclepro.2017.06.133
  • Ho, L. T., Alvarado, A., Larriva, J., Pompeu, C., & Goethals, P. (2019). An integrated mechanistic modelling of a facultative pond: parameter estimation and uncertainty analysis. Water Research, USA, 151(1), 170–182. https://doi.org/10.1016/j.watres.2018.12.018
  • Hu, Z., Lee, J. W., Chandran, K., Kim, S., Brotto, A. C., & Khanal, S. K. (2015). Effect of plant species on nitrogen recovery in aquaponics. Bioresource Technology, Netherlands, 188(1), 92–98. https://doi.org/10.1016/j.biortech.2015.01.013
  • Indonesian National Standard. (2002). SNI 01-6484,5:2002 Ikan lele dumbo (Clarias sp.) Kurniawan, A & Yamamoto, T. (2019). Accumulation of NH₄⁺ and NO₃⁻ inside Biofilms of Natural Microbial Consortia: Implication on Nutrients Seasonal Dynamic in Aquatic Ecosystems. International Journal of Microbiology, United Kingdom, 6473690. https://doi.org/10.1155/2019/6473690
  • Li, F., Sun, Z., Qi, H., Zhou, X., Xu, C., Wu, D., Fang, F., Feng, J., & Zhang, N. (2019). Effects of rice-fish co-culture on oxygen consumption in intensive aquaculture pond. Rice Science, China, 26(1), 50–59. https://doi.org/10.1016/j.rsci.2018.12.004
  • Maigual-Enriquez, Y. A., Maia, A. A. D., Guerrero-Romero, C. L., Matsumoto, T., Rangel, E. C., & de Morais, L. C. (2002), Comparison of sludges produced from two different recirculating aquaculture systems (RAS) for recycle disposal. Aquaculture, Netherlands, 502(1), 87–96. https://doi.org/10.1016/j.aquaculture.2018.11.060
  • Panase, P., Uppapong, S., Tuncharoen, S., Tanitson, J., Soontornprasit, K., & Intawicha, P. (2018). Partial replacement of commercial fish meal with Amazon sailfin catfish Pterygoplichthys pardalis meal in diets for juvenile Mekong giant catfish Pangasianodon gigas. Aquaculture Reports, 12, 25–29. https://doi.org/10.1016/j.aqrep.2018.08.005
  • Pouil, S., Samsudin, R., Slembrouck, J., Sihabuddin, A., Sundari, G., Khazaidan, K., Kristanto, A. H., Pantjara, B., & Caruso, D. (2019). Nutrients budgets in a small-scale freshwater fish pound system in Indonesia. Aquaculture, Netherlands, 504(1), 267–274. https://doi.org/10.1016/j.aquaculture.2019.01.067
  • Sabaouri, F., Gharabaghi, B., Sattar, A. M. A., & Thompson, A. M., (2016) Event-based stormwater management pond runoff temperature model. Journal of Hydrology, Netherlands, 540(1), 306–316. https://doi.org/10.1016/j.jhydrol.2016.06.017
  • Senff, P., Partelow, S., Indriana, L. F., Buhari, N., & Kunzmann, A. (2018). Improving pond aquaculture production on Lombok, Indonesia. Aquaculture, Netherlands, 496(1), 64–73. https://doi.org/10.1016/j.aquaculture.2018.07.027
  • Tran, N., Rodriguez, U.-P., Chan, C. Y., Phillips, M. J., Mohan, C. V., Henriksson, P. J. G., Koeshendrajana, S., Suria, S., & Halla, S. (2017). Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the AsiaFish model. Mar. Policy. United Kingdom, 79(1), 25–32. https://doi.org/10.1016/j.marpol.2017.02.002
  • Yamazaki, S., Resosudarmo, B. P., Girsang, W., & Hoshino, E. (2018). Productivity, social capital and perceived environmental threats in small-island fisheries: insights from Indonesia. Ecological Economics, Netherlands, 152(1), 62–75. https://doi.org/10.1016/j.ecolecon.2018.05.020
  • Yi, D., Reardon, T., & Stringer, R. (2018). Shrimp aquaculture technology change in Indonesia: are small farmers included? Aquaculture. Netherlands, 493(1), 436–445. https://doi.org/10.1016/j.aquaculture.2016.11.003