FLAVONOİDLER ve BİYOLOJİK AKTİVİTELERİ

Flavonoidler; sebze, meyve, çiçek, kuruyemiş, tohum, çay, bal ve propoliste bulunan polifenolik fitokimyasallardır. İnsan ve hayvan sağlığını destekleyen ve hastalık riskini azaltmaya yardımcı olan kapsamlı biyolojik özelliklere sahiptirler bu yüzden geçmişten günümüze bu bileşikleri içeren bitkiler farklı hastalıkları tedavi etmek için kullanılmıştır. Flavonoidlerin yapısal fonksiyon ilişkisi, başlıca biyolojik aktivitelerin özetidir. Antibakteriyel, hepatoprotektif, anti inflamatuar, antikanser ve antiviral ajanlar gibi birçok flavonoidin tıbbi etkinliği iyi bilinmektedir. Bazı viral salgınlar, en son COVID-19 salgını da dahil olmak üzere yıllardır insanlığın yüzleştiği bir durum olmuştur ve bu hastalıkları iyileştirmek için bitkilerin kullanımını araştıran birçok araştırmacı, İn vitro ve in vivo çalışmalarda, flavonoidlerin birçok bulaşıcı (bakteriyel ve viral hastalıklar), kardiyovasküler hastalıklar, dejeneratif hastalıklar, kanser ve diğer yaşa bağlı hastalıklarda antitümör, kardiyovasküler hastalıkların önlenmesi, antibakteriyel antifungal, anti-alerjik, östrojenik, anti-inflamatuar ve antiviral aktiviteler gibi etkileyici biyokimyasal aktivitelere sahip olduğunu gözlemlemiştir. Bu derlemede flavonoidlerin çeşitli biyolojik aktiviteleri incelenecektir.

BIOLOGİCAL ACTIVITIES OF FLAVONOIDS

Flavonoids; are polyphenolic phytochemicals found in vegetables, fruits, flowers, nuts, seeds, tea, honey and propolis. They have extensive biological properties that support human and animal health and help reduce the risk of disease, so plants containing these compounds have been used to treat different diseases from past to present. Some viral outbreaks have been a situation humanity has faced for years, including the most recent COVID-19 outbreak .Many researchers investigating the use of plants to cure these diseases, In vitro and in vivo studies, flavonoids in many infectious (bacterial and viral diseases), cardiovascular diseases, degenerative diseases, cancer and other age-related diseases, antitumor, cardiovascular disease prevention, antibacterial antifungal, anti- observed that it has impressive biochemical activities such as allergic, estrogenic, anti-inflammatory and antiviral activities. In this review, various biological activities of flavonoids will be examined.

___

  • Ahmad, A., Kaleema, M., & Shafiq, H. (2015). Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—A review. Food Research International (77), 221–235. http:// dx.doi.org/10.1016/j.foodres.2015.06.021
  • Andres, A., Donovan, S. M., & Kuhlenschmidt, M. S. (2009). Soy isoflavones and virus infections. The Journal of Nutritional Biochemistry, 20(8), 563– 569. https://doi.org/10.1016/j.jnutbio.2009.04.004
  • Auerswald, H., Maquart, P. O., Chevalier, V., & Boyer, S. (2021). Mosquito Vector Competence for Japanese Encephalitis Virus. Viruses, 13(6), 1154. https://doi.org/10.3390/v13061154
  • Badshah, S. L., Faisal, S., Muhammad, A., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2021). Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 140, 111596. https://doi.org/10.1016/j.biopha.2021.111596
  • Bordicchia, M., Fumian, T. M., Van Brussel, K., Russo, A. G., Carrai, M., Le, S. J., Pesavento, P. A., Holmes, E. C., Martella, V., White, P., Beatty, J. A., Shi, M., & Barrs, V. R. (2021). Feline Calicivirus Virulent Systemic Disease: Clinical Epidemiology, Analysis of Viral Isolates and In Vitro Efficacy of Novel Antivirals in Australian Outbreaks. Viruses, 13(10), 2040. https://doi.org/10.3390/v13102040
  • Borg, C., Jahun, A. S., Thorne, L., Sorgeloos, F., Bailey, D., & Goodfellow, I. G. (2021). Murine norovirus virulence factor 1 (VF1) protein contributes to viral fitness during persistent infection. The Journal of General Virology, 102 (9), 001651. https://doi.org/10.1099/jgv.0.001651
  • Carvalho, O. V., Botelho, C. V., Ferreira, C. G., Ferreira, H. C., Santos, M. R., Diaz, M. A., Oliveira, T. T., Soares-Martins, J. A., Almeida, M. R., & Silva, A., Jr (2013). In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: Implications of Structural Differences for Antiviral Design. Research in Veterinary Science, 95(2), 717–724. https:// doi.org/10.1016/j.rvsc.2013.04.013
  • Cataneo, A. H. D., Ávila, E. P., Mendes, L. A. O., de Oliveira, V. G., Ferraz, C. R., de Almeida, M. V., Frabasile, S., Duarte Dos Santos, C. N., Verri, W. A., Jr, Bordignon, J., & Wowk, P. F. (2021). Flavonoids as Molecules With Anti-Zika Virus Activity. Frontiers in Microbiology, 12, 710359. https:// doi.org/10.3389/fmicb.2021.710359
  • Choi, H. J., Song, J. H., Park, K. S., & Kwon, D. H. (2009). Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. European Journal of Pharmaceutical Sciences: Official Journal of The European Federation for Pharmaceutical Sciences, 37(3-4), 329–333. https://doi.org/10.1016/ j.ejps.2009.03.002
  • Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules (Basel, Switzerland), 26(17), 5377. https://doi.org/10.3390/molecules26175377
  • Forni, C., Rossi, M., Borromeo, I., Feriotto, G., Platamone, G., Tabolacci, C., Mischiati, C., & Beninati, S. (2021). Flavonoids: A Myth or a Reality for Cancer Therapy?. Molecules (Basel, Switzerland), 26(12), 3583. https:// doi.org/10.3390/molecules26123583
  • Guo, H., Wan, X., Niu, F., Sun, J., Shi, C., Ye, J. M., & Zhou, C. (2019). Evaluation of antiviral effect and toxicity of total flavonoids extracted from Robinia pseudoacacia cv. idaho. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 118, 109335. https://doi.org/10.1016/ j.biopha.2019.109335
  • Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2), 457. https:// doi.org/10.3390/nu12020457
  • Kumar, S., Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750
  • Lalani, S., & Poh, C. L. (2020). Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses, 12(2), 184. https://doi.org/10.3390/v12020184
  • Mulvey, P., Duong, V., Boyer, S., Burgess, G., Williams, D. T., Dussart, P., & Horwood, P. F. (2021). The Ecology and Evolution of Japanese Encephalitis Virus. Pathogens (Basel, Switzerland), 10(12), 1534. https:// doi.org/10.3390/pathogens10121534
  • Oleaga, Á., Vázquez, C. B., Royo, L. J., Barral, T. D., Bonnaire, D., Armenteros, J. Á., Rabanal, B., Gortázar, C., & Balseiro, A. (2022). Canine distemper virus in wildlife in south-western Europe. Transboundary and Emerging Diseases, 69(4), e473–e485. https://doi.org/10.1111/tbed.14323
  • Orhan, D. D., Ozçelik, B., Ozgen, S., & Ergun, F. (2010). Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiological Research, 165(6), 496–504. https://doi.org/10.1016/j.micres.2009.09.002
  • Ozçelik, B., Kartal, M., & Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical. Biology 2011(49), 396–402
  • Purwitasari, N., Subarka, KA., & Putra, DF. (2020). The Effect of Flavonoid Fraction from Vitex trifolia Leaves on Pandemic-2009 H1N1 Influenza A Virus Propagated in Embryonated Chicken Eggs. Indian Journal of Forensic Medicine & Toxicology, 14(3), 2099-2104.
  • Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chemico-biological Interactions, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211
  • Seo, DJ., Jeon, SB., & Oh, H. (2015). Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control, (60), 25-30, http://dx.doi.org/10.1016/j.foodcont.2015.07.023
  • Shi, S., Li, J., Zhao, X., Liu, Q., & Song, S. J. (2021). A comprehensive review:Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry, 191, 112895. https://doi.org/10.1016/ j.phytochem.2021.112895
  • Solnier, J., & Fladerer, J. P. (2021). Flavonoids: A complementary approach to conventional therapy of COVID-19?. Phytochemistry reviews : Proceedings of The Phytochemical Society of Europe, 20(4), 773–795. https://doi.org/10.1007/s11101-020-09720-6
  • Spiri A. M. (2022). An Update on Feline Calicivirus. Eine Übersicht zum Felinen Calicivirus. Schweizer Archiv fur Tierheilkunde, 164(3), 225–241. https://doi.org/10.17236/sat00346
  • Wang, L., Song, J., Liu, A., Xiao, B., Li, S., Wen, Z., Lu, Y., & Du, G. (2020). Research Progress of the Antiviral Bioactivities of Natural Flavonoids. Natural Products and Bioprospecting, 10(5), 271–283. https:// doi.org/10.1007/s13659-020-00257-x
  • Wang, B., Ding, Y., Zhao, P., Li, W., Li, M., Zhu, J., & Ye, S. (2022). Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Computers in Biology and Medicine, 143, 105241. https://doi.org/10.1016/j.compbiomed.2022.105241
  • Yang, H., & Rao, Z. (2021). Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews. Microbiology, 19(11), 685–700. https://doi.org/10.1038/s41579-021-00630 -8
  • Zhang, Y., Han, H., Qiu, H., Lin, H., Yu, L., Zhu, W., Qi, J., Yang, R., Pang, Y., Wang, X., Lu, G., & Yang, Y. (2017 ). Antiviral activity of a synthesized shikonin ester against influenza A (H1N1) virus and insights into its mechanism. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 93, 636–645. https://doi.org/10.1016/ j.biopha.2017.06.076
  • Zhang, M., Zhu, S., Yang, W., Huang, Q., & Ho, C. T. (2021). The biological fate and bioefficacy of citrus flavonoids: bioavailability, biotransformation, and delivery systems. Food & Function, 12(8), 3307–3323. https:// doi.org/10.1039/d0fo03403g