Yeni doğan buzağı ishallerine karşı ticari aşı ile aşılanan sığırlardan doğan yavrularda pasif bağışıklık düzeyi
Bu çalışmada, bir ticari aşı (ScourGuard®(K),Pfizer) ile aşılanan sığırlarda BRV ve BCV spesifik bağışıklığın düzeyi ile yeni doğanların enfeksiyonunda pasif bağışıklığın rolü incelendi. Bu amaçla gebeliğinin 3. trimesterinde bulunan 41 sığırdan 2 grup oluşturuldu. Grup I'de bulunan sığırlara ticari aşı prospektüsüne göre aşı uygulandı. Grup II ise kontrol grubu olarak değerlendirildi. Her iki gruptaki sığırlardan aşı uygulamalarına paralel, doğum yaptıkları gün (l.gün) ve sonraki 3, 7, 14, 21 ve 28. günlerde kan, gaita ve kolostrum/süt (aşı uygulama dönemleri hariç) örnekleri; yeni doğan buzağılardan doğum sonrası 3, 7, 14, 21, 28. günlerde kan ve gaita örnekleri alındı. Kan ve kolostrum/süt örnekleri BRV ve BCV spesifik antikorlar yönünden mikronötralizasyon, gaita örnekleri BRV ve BCV antijeni yönünden ELISA ile kontrol edildi. Elde edilen verilere göre, aşı uygulanan ve aşı uygulanmayan sığırlara ait kan serumu ve kolostrum/süt örneklerindeki antikor seviyeleri ile yeni doğan buzağıların pasif bağışıklık düzeyi ve enfeksiyona maruz kalma oranlan karşılaştırmalı olarak değerlendirildi. Aşı uygulamasını takiben erişkin sığırlarda aşı etkenlerine spesifik antikor yanıtında belirgin bir artış saptanamadı. Ancak aşı uygulanan ve aşı uygulanmayan annelerden doğan buzağılarda enfeksiyona maruz kalma oranlarının sırasıyla %30.0 ve %54.5 olduğu belirlendi.
Level of the passive immunity in calves from cows vaccinated for neonatal calf diarrhea
In this study, the level of the BRV and BCV specific immunity in cows which vaccinated with a commercial vaccine (ScourGuard®(K),Pfizer) and the role of the passive immunity in newborns' infections were investigated. For this aim two groups were organised from 41 cows in their 3rd trimaster of pregnancy. Group I cows were vaccinated according to the prosedüre of the commercial vaccine. Group II cows were used as a control . At the time of the vaccination, at the calving day (lsl day) and at 3,7,14,21 and 28th days after calving, blood, feces and colostrum/milk (except vaccination period) samples from cows in each group; from newborn calves at 3,7,14,21,28th days after birth blood and feces samples were collected. Blood and colostrum/milk samples were controlled for the presence of BRV and BCV antibodies using microneutralisation technique. Feces were tested for BRV and BCV antigen by ELISA. The antibody liters in blood sera and colostrum/milk from cows, levels of the passive immunity of newborn calves and the infection rates of calves were evaluated comparatively for Group I and II cows, their calves. Data shown that following the vaccination no remarkable specific antibody increase against vaccine antigens (BRV and BCV) was detected in cows. However the infection rate of calves born from vaccinated and unvaccinated cows were 30.0% and 54.5%, respectively.
___
- 1. Alkan F (1998): Buzağı ishalllerinde rotavirus ve coronavirusların rolü. Ankara Üniv Vet Fak Derg, 45, 29-37.
- 2. Alkan F, Pulat H, Yazıcı Z, Burgu İ (1992): Ters (reverse) pasif hemaglutinasyon testi ile ishalli buzağı gaitalarında rotavirus ların tespiti. Ankara Üniv Vet Fak Derg, 39, 238-246.
- 3. Bridger JC, Woode GN, Meyling A (1978): Isolation of coronaviruses from neonatal calf diarrhea in Great Britain and Denmark. Vet Microbiol, 3, 101-113.
- 4. Burgu İ, Akça Y, Alkan F, Özkul A, Karaoğlu T (1995): Yenidoğan ishalli buzağılarda rotavirusların EM,ELISA ve PAGE teknikleri ile çabuk teşhisi ve antijenik karakterizasyonu. Ankara Üniv Vet Fak Derg, 42, 491-498.
- 5. Castrucci G, Ferrari M, Angellillo V, Rigonat F, Capodicasa L (1993): Field evaluation of the efficacy of Romovac 50, a new inactivated adjuvanted bovine rotavirus vaccine. Comp Immunol Microbiol Infect Dis, 16, 235-239.
- 6. Cornaglia EM, Fernandez FM, Gottschalk M, Barradeguy ME, Luchelli a, Passini MI, Saif LJ, Parraud JR, Romat A, Schudel AA (1992): Reduction in morbidity due to diarrhea in nursing beef calves by use of an inactivated oil-adjuvanted rotavirus-Escherichia coli vaccine in the dam. Vet Microbiol, 30, 191-202.
- 7. Fernandez FM, Conner ME, Hodgins DC, Parwani AV, Nielsen PR, Crawford SE, Estes MK, Saif LJ (1998): Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from cows immunized with recombinant SA11 rotavirus core-like particle (CLP) or virus-like Particle (VLP) vaccines. Vaccine,16, 507-515.
- 8. Garcia-Sanchez J, Corral C, Halaihel NG, Simn MC, Alonso JL, Muzquiz JL, Ortega C, Girones O (1993): Survey of rotavirus infections in a dairy herd: comparison between PAGE and two commercial test. Vet Microbiol, 34,321-332.
- 9. House JA (1978): Economic impact of rotavirus and other neonatal disease agent of animals, J Am Vet Med Assos, 173,573-576.
- 10. Kim A, Nielsen PR, Hodgins D, Chang KO, Saif LJ (2002): Lactogenic antibody responses in cows vaccinated with recombinant bovine rotavirus-like particles(VLPs) of two serotypes or inactivated bovine rotavirus vaccines. Vaccine, 20, 1248-1258.
- 11. Kohara J, Tsunemitsu H (2000): Correlation between maternal serum antibodies and protection against bovine rotavirus diarrhea in calves. J Vet Med Sci, 62, 219-221.
- 12. Kohara J, Hirai T, Mori K, Ishizaki H, Tsunemitsu H (1997): Enhancement of passive immunity with maternal vaccine against newborn calf diarrhea. J Vet Med Sci, 59, 1023-1025.
- 13. Lu W, Duhamel GE, fienfield DA, Grotelueschen DM (1994): Serological and gehotypic characterization of group A rotavirus reassortants from diarrheic calves born to dams vaccinated against rotavirus. Vet Microbiol, 42, 159-170.
- 14. Ojeh CK, Snodgrass DR, Herring AJ (1984): Evidence for serotypic variation among bovine rotaviruses. Arch Virol, 79, 161-171.
- 15. Özkul A, Yeşilbağ K, Karaoğlu T, Burgu İ (2002): Electrophoretypes of bovine rotaviruses detected in Turkey. Turk J Vet Anim Sci, 26, 359-362.
- 16. Saif LJ, Brock KV, Redman DR, Kohler EM (1991): Winter dysentery in dairy herds: electron microscopic and serological evidence for an association with coronavirus infection. Vet Rec, 128, 447-449.
- 17. Snodgrass DR (1982): Diarrhoea in dairy calves reduced by feeding colostrunt from cows vaccinated with rotavirus. Res Vet Sci, 32,70-73.
- 18. Snodgrass DR, Fahey KJ, Wells PW, Campbell I, Whitelaw A (1980): Passive immunity in calf rotavirus infections: Maternal vaccination increases and prolongs immunoglobulin G1 antibody secretion in milk. Infection and Immunity, 28, 344-349.
- 19. Steiner L, Busato A, Burnens A, Gaillard C (1997): Ha- ufigkeiten und Ursachen von Kalberverlusten and Kal berkrankheiten in Mutterkuhbeitrieben. II. Mikrobiologische und parasitologische diagnosen bei Kalbern mit Durchfall. DTW, 104, 169-173.
- 20 Şahna KC (2002): Sığırlarda rotavirus enfeksiyonunun epidemiyolojisinde gebeliğin ve maternal antikorların rolü. Doktora tezi, Sağlık Bilimleri Enstitüsü,Ankara.
- 21. Wellemans G, Opdenbosch E (1981): Postpartum atibody levels for rota, corona and BVD virus in cows milk. Vlaams Diergeneeskunding Tijdschrift, 50, 46-52.
- 22. Wieda H, Bengelsdorff HJ, Bernhardt D, Hungere K H. (1987) Antibody levels in milk of vaccinated and unvaccinated cows against organisms of neonatal diarrhoea. J Vet Med B 34, 495-503.
- 23. Woode GN, Jones JM, Bridger JC (1975): Levels of colostral antibodies against neonatal calf diarrhoea virus. Vet Rec, 97, 148-149.
- 24. Yazıcı Z (1991): Buzağılarda rotavirus enfeksiyonlarının seroepidemiyolojisi ve ELISA testi ile rotavirus antijenlerinin identifıkasyonu. Doktora tezi, Sağlık Bilimleri Enstitüsü, Ankara.