Sığır mastitislerinde gram-pozitif ve gram-negatif bakterilerin filtrasyon-boyama yöntemi ile çabuk tanısı

Bu çalışmada, filtrasyon-boyama yönteminin klinik ve subklinik mastitisli sütlerde Gram pozitif ve Gram negatif bakteri varlığını belirlemedeki etkinliği incelendi. Filtrasyon tekniğinde, ayıraçla karıştırılan sütler filtrasyon işlemlerinden geçirildikten sonra boyandı ve, sonuçlar değerlendirildi. Yöntemin minimal tanı limitlerini belirlemek için deneysel olarak inokule edilen normal süt örneklerinde, filtrasyon yöntemi ile Gram pozitif bakterilerin 8.96 x $10^5$ 3.80 x $10^6$/ml ve Gram negatif bakterilerin 6.56 x $10^5-8.40 x 10^5$ /ml miktarları saptanabildi, incelenen tüm bakteri türleri, filtrasyon yöntemi ile referens Gram reaksiyonuna uygun sonuçlar verdi ve bakteri inokule edilmeyen kontrol süt örneklerinde filtrasyon ile hatalı pozitif sonuç alınmadı. Yöntemin saha performansını belirlemek için klinik mastitisli 66 ve subklinik mastitisli 52 süt örneği filtrasyon yöntemi ile ve bakteriyolojik olarak incelendi, incelenen klinik mastitis vakalarının %95.5'inde ve subklinik mastitis vakalarının %86.5'inde kültür ile uyumlu sonuçlar alındı. Filtrasyon yöntemindeki hatalı bulgular bakteri varlığının saptanamamasından veya boyanmadan kaynaklandı. Mastitis belirtisi bulunmayan hayvanlara ait 30 süt.örneğinden hatalı sonuç alınmadı. Yöntemin klinik mastitislerdeki sensitivite ve spesifitesi, bakteri varlığını saptama yönünden %96 ve %100, Gram pozitif-negatif ayırma yönünden %98-100; aynı değerler için subklinik mastitislerde sırasıyla %85 ve %100, ve %93-100 olarak bulundu. Sonuçta, kolayca uygulanabilen ve kısa sürede sonuç veren filtrasyon yönteminin, saha koşullarında özellikle klinik mastitislerin etiyolojisi hakkında ön bilgiler verebileceği kanısına varıldı.

Rapid detection of gram-positive and gram-negative bacteria in bovine mastitis

In this study, the ability of a filtration-staining method to detect Gram-positive and -negative bacteria in milk from cows with mastitis was evaluated. The technique consisted of filtration of milk and concentration of bacteria on filter, followed by staining and decoloration of filter. In normal milks inoculated with several bacteria, to determine the minimal detection limits of method, 8.96 x $10^5-3.80 x 10^6$ /ml of Gram-positive and 6.56 x $10^5-8.40 x 10^5$ /ml of Gram-negative bacteria could be detected. Nofalse-positive result was observed in uninoculated control milks. To evaluate the performance of filtration method in mastitic milk, technique was applied to 66 samples from clinical mastitis and 52 samples from subclinical mastitis. Filtration method correctly showed the presence of bacteria in 95.5% ofculture-positive milks with clinical mastitis, corresponding to a 96% sensitivity. Bacteria were correctly detected in 86.5% of milk samples from subclinical mastitis with filtration method, which corresponds to a sensitivity of 85%. The test correctly identified all milk samples without the presence of bacteria both in clinical and subclinical mastitis, corresponding to 100% specificity. Gram-positive and -negative bacteria were correctly identified with a sensitivity of 98 and 100% and specificity of 100 and 98%, in milk samples from clinical mastitis. Sensitivity and specificity for predicting Gram reaction were between 93 and 100 percent in samples from subclinical mastitis. False-staining reactions were observed only in Gram-positive bacteria, including two Streptococcus sp. and one Corynebacterium sp.. It was concluded that filtration method may be used to make a quick decision for gross etiology and treatment of clinical mastitis and with a lesser extent subclinical mastitis, in field conditions.

___

  • 1. Barkema HW, Schukken YH, Lam TJGM, Beiboer ML, Wilmink H, Benedictus G, Brand A (1998): Incidence of clinical mastitis in dairy herds grouped in three categories by bulk milk somatic cell count. J Dairy Sci, 81, 411-419.
  • 2. Benites NR, Guerra JL, Melville PA, Costa EO (2002): Aetiology and histopathology of bovine mastitis of spontaneous occurrence. J Vet Med B, 49, 366-370.
  • 3. Biggadike HJ, Ohnstad I, Laven RA, Hillerton JE (2002): Evaluation of measurements of the conductivity of quarter milk samples for the early diagnosis of mastitis. Vet Rec, 25,655-658.
  • 4. Brand A (1998): Incidence of clinical mastitis in dairy hkrds grouped in three categories by bulk milk somatic cell count. J Dairy Sci, 81, 411-419.
  • 5. Erskine RJ, Walker RD, Bolin CA, Bartlett PC, White DG (2002): Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J Dairy Sci, 85,1111-1118.
  • 6. Fernandez-Astorga A, Hijarrubia MJ, Lazaro B, Barcina I (1996): Effect of the pre-treatments for milk samples filtration on direct viable cell counts. J Appl Bacteriol, 80: 511-516.
  • 7. Fox LK, Gay JM (1993): Contagious mastitis. Vet Clin North Am Food Anim Pract, 9, 475-487.
  • 8. Gunasekera TS, Attfield PV, Veal DA (2000): A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl Environ Microbiol, 66, 1228-1232.
  • 9. Jonsson P, Bjorklund L, Olofson AS, Eriksson O (1985): Umulus test-a rapid and simple method for the detection of endotoxins produced by gram-negative bacteria in mastitis milk. Nord Vet Med, 37, 298-305.
  • 10. Katholm J, Andersen PH (1992) Acute coliforms mastitis in dairy cows: endotoxin and biochemical changes in plasma and colony-forming units in milk. Vet Rec, 131, 513-514.
  • 11. Miller GY, Bartlett PC, Lance SE, Anderson J, Heider LE (1993): Costs of clinical mastitis and mastitis prevention in dairy herds. JAVMA, 202, 1230-1236.
  • 12. Noda Y, Toei K (1992): A new bacterial staining method involving Gram stain with theoretical consideration of the staining mechanism. Microbios, 70, 49-55.
  • 13. Noordhuizen JP, Stassen EN, Klerx I (1993): Pilot study of the Deosan-RMTK (rapid mastitis test kit), a diagnostic test for the detection of cows with high cell count. Tijdschr Diergeneeskd, 118, 329-331.
  • 14. Oliver SP (1998): Frequency of isolation of environmental mastitis causing pathogens and incidence of new intramammary infection during the nonlactating period. Am J Vet Res, 49, 1789-1793.
  • 15. Pettipher G, Mansell R, McKinnon CH, Cousins CM (1980): Rapid membrane filtration-epifluorescent microscopy technique for direct enumeration of bacteria in raw milk. Appl Environ Microbiol, 39, 423-429.
  • 16. Quinn PJ, Carter ME, Markey BK, Carter GR (1994): Clinical Veterinary Microbiology. Mosby Int, Edinburgh.
  • 17. Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, Lagace J (2001): Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol, 39, 2584-2589.
  • 18. Schakenraad AHW, Dijkhuizen AA (1990): Economic losses due to bovine mastitis in Dutch dairy herds. Neth J Agri Sci, 38, 89-92.
  • 19. Smith KL, Hogan JS (1993): Environmental mastitis. Vet Cim North Am Food Anim Pract, 9, 489-498.
  • 20. Smith GW, Constable PD, Morin DE (2001): Ability of hematologic and serum biochemical variables to differentiate gram-negative and gram-positive mastitis in dairy cows. J Vet Intern Med, 15, 394-400.
  • 21. Thrusfield M (1995): Veterinary Epidemiology, 2nd ed. Blackwell Science Ltd, Oxford.
  • 22. Watts JL (1988): Etiological agents of bovine mastitis. Vet Microbiol, 16, 41-66.
  • 23. Wellenberg GJ, van der Poel WHM, Van Oirschot JT (2002): Viral infections and bovine mastitis: a review. Vet Microbiol, 88, 27-45.
  • 24. Wells SJ, Ott SL, Hillberg-Seitzinger A (1998): Key health issues for dairy cattle—new and old. J Dairy Sci, 81, 3029-3035.
  • 25. Yazdankhah SP, Sorum H, Larsen HJ, Gogstad G (2001): Rapid method for detection of gram-positive and -negative bacteria in milk from cows with moderate or severe clinical mastitis. J Clin Microbiol, 39, 3228-3233.