Prevalence of ketosis in dairy herds in Marmara, Aegean and Mediterranean regions of Turkey
Postpartum dönemde yüksek süt verimli ineklerde artan enerji gereksinimi neredeyse her zaman negatif enerji dengesi (NED) ile sonuçlanır. NED'nin derecesine göre süt sığırlarında klinik veya subklinik ketozis meydana gelebilir. Sunulan çalışmanın amacı Türkiye'de en çok sığır popülasyonunun bulunduğu üç bölgede; Marmara, Ege ve Akdeniz'de ketozis ve subklinik ketozis insidansı ve insidanslar arasındaki farkı değerlendirmekti. Çalışma için sığırlar (n: 980) üç bölgeden (her bölgeden 2 çiftlik) seçildi. Süt verimleri, yönetim ve beslenme faktörleri bütün çiftliklerde benzerdi. Kan numuneleri postpartum 14-21. günlerde ve 6. haftada alındı. Kan Beta Hidroksi Bütirik Asit (BHBA) ve glukoz seviyeleri ölçüldü. Serum BHBA seviyesi > 1.2 mmol/l ve idrar keton testi negatif olan inekler subklinik ketozis (SKK), serum BHBA > 1.2 mmol/l ve idrar testi pozitif, anoreksi, halsizlik, depresyon, konstipasyon ve rumen kontraksiyonu azalmış olan inekler klinik ketozis (KK) olarak belirlenmiştir. Herhangi bir klinik bulgu göstermeyen ve örnekleme sırasında serum BHBA seviyesi 1.2 mmol/l'den düşük hayvanlar sağlıklı olarak belirlenmiştir. Akdeniz bölgesinde postpartum dönemdeki 315 inekten 12'si (%3,8) ve 46'sı (%14,8); Ege bölgesinde 325 inekten 24'ü (%7,3) ve 54'ü (%16,6) ve Marmara bölgesinde 340 inekten 33 (%9,7) ve 76'sı (%22,3) sırası ile KK ve SKK'li olarak tespit edildi. KK'li ineklerde kan glukoz seviyesi SKK'li ineklerden daha düşüktü ve üç bölgede de her iki tip ketozisli hayvanların kan glukoz seviyesi sağlıklı hayvanlardan daha düşüktü. Sunulan çalışmanın sonuçları göstermektedir ki KK ve SKK insidansı diğer araştırmalardaki ortalama insidanstan daha yüksektir. Özellikle Marmara bölgesinde insidansın % 20'den daha yüksek olması gösteriyor ki bu bölgede önemli beslenme ve yönetim hataları bulunmaktadır.
Türkiye'deki Marmara, Ege ve Akdeniz bölgelerinde bulunan süt sığırı işletmelerinde ketozis prevalansı
Increasing energy demands of high-yielding dairy cow in postpartum period results almost always with negative energy balance (NEB). According to the degree of NEB, dairy cows could suffer from clinical or subclinical ketosis. The aim of the presented study was to evaluate the incidence and difference between incidences of clinical and subclinical ketosis in three regions with highest cattle population in Turkey; Marmara, Aegean and Mediterranean regions. Cattle (n= 980) from three regions (2 farms from each region) were selected for the study. Milk yields, management and feeding factors of all farms were similar. Blood samples were collected on days 14-21 and sixth week after calving. Blood beta hydroxybutyric acid (BHBA) and glucose levels were measured. Cows with serum BHBA > 1.2 mmol/l and negative urine ketone test were designated as suffering subclinical ketosis (SCK). Cows with serum BHBA > 1.2 mmol/l, positive urine test and clinical findings such as anorexia, fatigue, depression, constipation and decrease in contractions of rumen were designated as suffering clinical ketosis (CK). Animals without any clinical finding and serum BHBA levels lower than 1.2 mmol/l at the time of sampling were designated as healthy. In Mediterranian region, 12 (3,8%) and 46 (14,8%) of 315; in Aegean region, 24 (7,3%) and 54 (16,6%) of 325, and in Maramara region, 33 (9,7%) and 76 (22,3%) of 340 cows were suffered from CK and SCK respectively in postpartum period. Blood glucose levels of CK cows was lower than SCK cows and blood glucose levels of both types of ketosis were lower than healthy animals in animals from all three regions. The results of the presented study indicate that incidence of CK and SCK is much higher than average incidence rates in other surveys. Especially incidence higher than 20% in Marmara region demonstrates that there are crucial errors in management and feeding in that region.
___
- 1. Andersson L (1984): Concentration of blood and milk ketone bodies, blood isopropanol and plasma glucose in dairy cows in relation to the degree of hyperketonaemia and clinical signs. Zentralbl Veterinarmed A, 31, 683-693.
- 2. Andersson L (1988): Sub-clinical ketosis in dairy cows. Vet Clin North Am Food Anim Pract, 4, 233-251.
- 3. Asl AN, Nazifi S, Ghasrodashti AR, et al. (2011): Prevalence of subclinical ketosis in dairy cattle in the Southwestern Iran and detection of cutoff point for NEFA and glucose concentrations for diagnosis of subclinical ketosis. Prev Vet Med, 100, 38-43.
- 4. Demir G, Mecitoglu Z, Catik S, et al. (2012): Comparison of two cow side BHBA test for diagnosis of subclinical ketosis. Uludag Univ J Fac Vet Med, 31, 7-10.
- 5. Dohoo IR, Martin SW (1984a): Disease, production and culling in Holstein-Friesian cows IV. Effects of disease on production. Prev Vet Med, 2, 755-770.
- 6. Dohoo IR, Martin SW (1984b): Subclinical ketosis: Prevalence and associations with production and disease. Can J Comp Med, 48, 1-5.
- 7. Dubuc J, Duffield TF, Leslie KE, et al. (2010): Risk factors for postpartum uterine diseases in dairy cows. J Dairy Sci, 93, 5764-5771.
- 8. Duffield TF, Sandals D, Leslie KE, et al. (1998): Efficacy of monensin for the prevention of subclinical ketosis in lactating dairy cows. J Dairy Sci, 81, 2866-2873.
- 9. Duffield TF, Leslie KE, Sandals D, et al. (1999): Effect of a monensin controlled-release capsule on cow health and reproductive performance. J Dairy Sci, 82, 2377-2384.
- 10. Duffield T (2000): Subclinical ketosis in lactating dairy cattle. Vet Clin North Am Food Anim Pract, 16, 231-253.
- 11. Duffield TF, Lissemore KD, McBride BW, et al. (2009): Impact on hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci, 92, 571-580.
- 12. Geishauser T, Leslie K, Tenhag J, et al. (2000): Evaluation of eight cow-side ketone tests in milk for detection of subclinical ketosis in dairy cows. J Dairy Sci, 83, 296-299.
- 13. Goff JP, Horst RL (1997): Effects of the addition of potassium or sodium, but not calcium, to prepartum rations on milk fever in dairy cows. J Dairy Sci, 80, 176- 186.
- 14. Herdt TH, Emery RS (1992): Therapy of diseases of ruminant intermediary metabolism. Vet Clin North Am Food Anim Pract, 8, 91-106.
- 15. Kauppinen K (1983): Correlation of whole blood concentrations of acetoacetate, 8-hydroxybutyrate, glucose and milk yield in dairy cows as studied under field conditions. Acta Vet Scand, 24, 349-361.
- 16. Kennerman E, Sentürk S, Biricik H (2006): Effect of monensin controlled release capsules on blood metabolites in periparturient dairy cows. Aust Vet J, 84, 282-284.
- 17. Kremer WDJ, Burvenich C, Noordhuizen-Stassen EN, et al. (1993): Severity of experimental Escherichia coli mastitis in ketonemic and non-ketonemic dairy cows. J Dairy Sci, 76, 3428.
- 18. LeBlanc S (2010): Monitoring metabolic health of dairy cattle in the transition period. J Reprod Dev, 56, 29-35.
- 19. LeBlanc SJ, Leslie KE, Duffield TF (2005): Metabolic predictors of displaced abomasum in dairy cattle. J Dairy Sci, 88, 159-170.
- 20. Mc Art JA, Nydam DV, Oetzel GR, et al. (2013): Elevated non-esterified fatty acids and ?-hydroxybutyrate and their association with transition dairy cow performance. Vet J, 198, 560-70.
- 21. Nielsen NI, Ingvartsen KL (2004): Propylene glycol for dairy cows A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Anim Feed Sci Tech, 115, 191-213.
- 22. Oetzel GR (2004): Monitoring and testing dairy herds for metabolic disease. Vet Clin North Am Food Anim Pract, 20, 651-674.
- 23. Ospina PA, Nydam DV, Stokol T, et al. (2010): Evaluation of nonesterified fatty acids and Bhydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J Dairy Sci, 93, 546-554.
- 24. Østergaard S, Gröhn YT (2000): Concentrate feeding, dry-matter intake, and metabolic disorders in Danish dairy cows. Livest Prod Sci, 65, 107-118.
- 25. Roberts T, Chapinal N, LeBlanc SJ, et al. (2012): Metabolic parameters in transition cows as indicators for early-lactation culling risk. J Dairy Sci, 95, 3057-3063.
- 26. Rollin E, Berghaus RD, Rapnicki P, et al. (2010): The effect of injectable butaphosphan and cyanocobalamin on postpartum serum B-hydroxybutyrate, calcium, and phosphorus concentrations in dairy cattle. J Dairy Sci, 93, 978-987.
- 27. Ruegg PL (2003): Investigation of mastitis problems on farms. Vet Clin North Am Food Anim Pract, 19, 47-73.
- 28. Schukken H (2000): Hyperketonemia and the impairment of udder defense: A review. Vet Res, 31, 397-412.
- 29. Seifi HA, LeBlanc SJ, Leslie KE, et al. (2011): Metabolic predictors of post-partum disease and culling risk in dairy cattle. Vet J, 188, 216-220.
- 30. Senturk S, Mecitoglu Z, Temizel EM, et al. (2010): Clinical and biochemical evaluation of cows occuring severe weight loss after calving. Uludag Univ J Fac Vet Med, 29, 43-49.
- 31. Suthar VS, Canelas-Rapos J, Deniz A, et al. (2013): Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J Dairy Sci, 96, 2925-38.