Anadolu manda sütündeki enrofloksasin atılımının değerlendirilmesi

Enrofloksasin (ENR), hem beşeri hekimlikte hem de veteriner hekimlikte yaygın olarak kullanılan geniş spektrumlu bir florokinolon antibiyotiktir. Bu çalışmada laktasyondaki mandalara ENR'nin (2,5 mg/kg vücut ağırlığı) intramusküler uygulamasını takiben 10. sağımına kadar ENR ve metaboliti siprofloksasinin (CIP) süt ile atılımı belirlendi. Her bir hayvanın sütü toplanarak ENR ve CIP düzeyleri LC-MS/MS ile tespit edildi. Yöntemin tespit sınırları ENR ve CIP için sırasıyla 0,35 μg/kg ve 0,12 μg/kg olarak saptandı. ENR ve metaboliti CIP'nin en yüksek toplam düzeyleri, enjeksiyondan sonraki ikinci sağımda 603 μg/kg olarak tespit edildi. Tüm manda sütü numunelerindeki kalıntı seviyesinin, beşinci sağımda maksimum kalıntı limitinden (100 μg/kg) daha düşük olduğu belirlendi. Ayrıca, kullanılan yöntem, tüketime sunulan 50 manda sütü örneğinde ENR ve CIP kalıntı varlığını değerlendirmek içinbaşarılı bir şekilde uygulandı ve hiçbir örneğinin bu antibiyotikleri içermediği saptandı. Sonuç olarak bu çalışma, LC-MS/MS yöntemi kullanılarak Anadolu mandalarında ENR ve CIP'in süt atılım seviyeleri hakkında bilgi sağladı. Anahtar sözcükler: Anadolu mandası, atılım, enrofloksasin, LC-MS/MS, siprofloksasin, süt.

Evaluation of the enrofloxacin excretion in Anatolian buffalo milk

Enrofloxacin (ENR) is a broad-spectrum fluoroquinolone antibiotic widely used in both human medicine and veterinary medicine. In this study, the milk-excretion patterns of ENR and its metabolite ciprofloxacin (CIP) were determined up to the 10th milking following the intramuscular administration of ENR (2.5mg/kg of body weight) to lactating dairy buffaloes. The milk of each animal was collected and the concentrations of ENR and CIP were detected in milk by LC-MS/MS. The detection limits of the method were determined for ENR and CIP as 0.35 μg/kg and 0.12 μg/kg, respectively. The highest total mean concentrations of ENR and its metabolite CIP was determined in the second milking after injection as 603 μg/kg. The residue level in all buffalo milk samples was found to be lower than the maximum residue limit (100 μg/kg) at the fifth milking. In addition, the employed method is successfully applied to evaluate the presence of ENR and CIP residue in 50 marketed buffalo milk samples and none of the samples contained these antibiotics. Consequently, the present study provided information on the milk excretion levels of ENR and CIP in Anatolian buffalo milks by an LC-MS/MS method.

___

  • 1. Acaroz U, Arslan-Acaroz D, Ince S (2019): A Wide Perspective on Nutrients in Beverages. 1-39. In: Grumezescu AM and Holban AM (Ed) Nutrients in Beverages. Academic Press.
  • 2. Acaroz U, Dietrich R, Knauer M, et al (2019): Development of a Generic Enzyme-Immunoassay for the Detection of Fluoro(quinolone)-Residues in Foodstuffs Based on a Highly Sensitive Monoclonal Antibody. Food Anal Methods, 13, 780-792.
  • 3. Acaroz U, Ince S, Arslan-Acaroz D, et al (2020): Determination of kanamycin residue in anatolian buffalo milk by LC-MS/MS. Kafkas Univ Vet Fak Derg, 26, 97–102.
  • 4. Chui-Shiang C, Wei-Hsien W, Chin-En T (2010): Simultaneous Determination of 18 Quinolone Residues in Marine and Livestock Products by Liquid Chromatography/ Tandem Mass Spectrometry. J Food Drug Anal, 18, 87–97.
  • 5. Cinquina AL, Roberti P, Giannetti L, et al (2003): Determination of enrofloxacin and its metabolite ciprofloxacin in goat milk by high-performance liquid chromatography with diode-array detection: Optimization and validation. J Chromatogr A, 987, 221-226.
  • 6. Cuypers WL, Jacobs J, Wong V, et al (2018): Fluoroquinolone resistance in Salmonella: Insights by wholegenome sequencing. Microb Genomics, 4, e000195.
  • 7. Du C, Deng T, Zhou Y, et al (2019): Systematic analyses for candidate genes of milk production traits in water buffalo (Bubalus Bubalis). Anim Genet, 50, 207–216.
  • 8. EU Commission Regulation (2019): Pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Available at https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf.(Accessed January 20, 2020).
  • 9. Haritova A, Lashev L, Pashov D (2003):Pharmacokinetics of enrofloxacin in lactating sheep. Res Vet Sci, 74, 241–245.
  • 10. Idowu OR, Peggins JO (2004): Simple, rapid determination of enrofloxacin and ciprofloxacin in bovine milk and plasma by high-performance liquid chromatography with fluorescence detection. J Pharm Biomed Anal, 35, 143–153.
  • 11. Jank L, Martins MT, Arsand JB, et al (2015): Highthroughput method for the determination of residues of βlactam antibiotics in bovine milk by LC-MS/MS. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess, 32, 1992–2001.
  • 12. Kaartinen L, Salonen M, Älli L, et al (1995): Pharmacokinetics of enrofloxacin after single intravenous, intramuscular and subcutaneous injections in lactating cows. J Vet Pharmacol Ther, 18, 357–362.
  • 13. Kara R, Acaroz U, Gurler Z, et al (2018): Manda Sütlerinde ICP-MS ile Metal ve Ağır Metal Seviyelerinin Belirlenmesi. Kocatepe Vet J, 11, 1–4.
  • 14. Lei Z, Liu Q, Yang B, et al (2017): Clinical efficacy and residue depletion of 10% enrofloxacin enteric-coated granules in pigs. Front Pharmacol, 8, 1–11.
  • 15. Lizondo M, Pons M, Gallardo M, et al (1997): Physicochemical properties of enrofloxacin. J Pharm Biomed Anal, 15, 1845–1849.
  • 16. Lv YK, L Yang, XH Liu, et al (2013): Preparation and evaluation of a novel molecularly imprinted hybrid composite monolithic column for on-line solid-phase extraction coupled with HPLC to detect trace fluoroquinolone residues in milk. Anal Methods, 5, 1848–1855.
  • 17. Mahmood T, Abbas M, Ilyas S, et al (2016):Quantification of fluoroquinolone (enrofloxacin, norfloxacin and ciprofloxacin) residues in cow milk. IJCBS, 10, 10–15.
  • 18. Malbe M, Salonen M, Fang W, et al (1996): Disposition of enrofloxacin (Baytril) into the udder after intravenous and intra-arterial injections into dairy cows. J Vet Med A, 43, 377–386.
  • 19. Mohammed HA, Abdou AM, Eid AM, et al (2016): Rapid tests for detection of enrofloxacin residues in liquid milk. Benha Vet Med J, 30, 97–103.
  • 20. Naeem A, Badshah SL, Muska M, et al (2016): The current case of quinolones: Synthetic approaches and antibacterial activity. Molecules, 21, 268.
  • 21. Nirala RK, Anjana K, Mandal KG, et al (2017): Persistence of antibiotic residue in milk under region of Bihar, India. Int J Curr Microbiol App Sci, 6, 2296–2299.
  • 22. Piñero MY, Fuenmayor M, Arce L, et al (2013): A simple sample treatment for the determination of enrofloxacin and ciprofloxacin in raw goat milk. Microchem J, 110, 533–537.
  • 23. Rath S, Padhy RN (2015): Prevalence of fluoroquinolone resistance in Escherichia coli in an Indian teaching hospital and adjoining communities. J Taibah Univ Med Sci, 10, 504–508.
  • 24. Sierra-Arguello YM, Furian TQ, Perdoncini G, et al(2018): Fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli from poultry and human samples assessed by PCR-restriction fragment length polymorphism assay. PLoS One, 13, 1–9.
  • 25. Talpade J (2018): pharmacokinetic study of single dose intravenous administration of enrofloxacin in Barbari goats. J Anim Res, 8, 609–611.
  • 26. Tian H (2011): Determination of chloramphenicol, enrofloxacin and 29pesticides residues in bovine milk by liquid chromatography-tandem mass spectrometry. Chemosphere, 83, 349–355.
  • 27. Tian Z, Gao JJ, Qin W (2018): Determination of fluoroquinolones in milk by ionic liquid-mediated two phaseextraction followed by capillary electrophoresis analysis. Madridge J Anal Sci Instrum, 3, 62–67.
  • 28. Trouchon T, Lefebvre S (2016): A review of enrofloxacin for veterinary use. Open J Vet Med, 6, 40–58.
  • 29. Ziv G (1994): Pharmacokinetics of Antibacterial Fluoroquinolones in Small and Large Animal Practice. 194-196. In: Proceedings of the 6th Congress of EAVPT Congress, Edinburgh.
Ankara Üniversitesi Veteriner Fakültesi Dergisi-Cover
  • Yayın Aralığı: 4
  • Başlangıç: 1954
  • Yayıncı: Ankara Üniversitesi Veteriner Fakültesi
Sayıdaki Diğer Makaleler

Phenotypic and molecular characterization of Salmonella Enteritidis isolates

Nadir KOÇAK, Özlem ALTINTAŞ, Tutku ARSLANTAŞ, Hidayet TUTUN, Alper KARAGÖZ, Levent ALTINTAŞ

Türkiye’nin Van ilindeki sığır kıymalarında Sarcocystis türlerinin 18S ribosomal RNA gen bölgesi kullanılarak moleküler tanımlanması

Bekir OĞUZ, Mustafa Serdar DEĞER, Sena KOŞAL

Broyler rasyonlarına kırmızı ginseng kökü tozu ilavesinin performans, immun sistem, sekal mikrobiyel populasyon ve bazı kan parametreleri üzerine etkisi

Sakine YALÇIN, Yavuz YENER, İrfan ÇOLPAN

Prevalence and molecular diagnosis of Gongylonema pulchrumin cattle and sheep in the Samsun region

Şinasi UMUR, Taner GÜREL

Investigation of the effectiveness of dehydrated corneal collagen barriers on corneal defects: An experimental rabbit model

Ali BELGE, Büşra KİBAR KURT

Siklik ve siklik olmayan Holştayn düvelerde Ovsynch ve resenkronizasyon protokollerinde intravajinal progesteron ilavesinin etkinliği

Murat ABAY, Kutlay GÜRBULAK, Örsan GÜNGÖR, Şükrü Metin PANCARCI, Tayfur BEKYÜREK, Mehmet KAYA, Esra CANOOĞLU, Mustafa ÜN, Ömer Orkun DEMİRAL

This study aimed to determine the reproductive characteristics of Saanen goats of Australian origin using an estrus synchronization program with hormones (MPA and PMSG) in two different mating periods (Period I and Period II) and to investigate the

Fatma Tülin ÖZBAŞER, Fatih ATASOY, Evren ERDEM

Anadolu manda sütündeki enrofloksasin atılımının değerlendirilmesi

Ulaş ACARÖZ, Sinan İNCE, Recep KARA, Zeki GÜRLER, Damla ARSLAN ACARÖZ, İsmail KÜÇÜKKURT, Abdullah ERYAVUZ

Hassas hayvancılık teknolojileri: Bilgi akışının yeni yönü

Koray TEKİN, Halit KANCA, Raphaël GUATTEO, Begüm YURDAKÖK-DİKMEN

Türkiye’de Kızılırmak Deltası’nda, bir kara leylekte (Ciconia nigra) Neophilopterus tricolor (Burmeister, 1838) olgusu

Ömral Ünsal ÖZKOÇ, Mustafa AÇICI, Gökhan EREN, Mehmet ÖZTÜRK, Cenk Soner BÖLÜKBAŞ