NaOH Konsantrasyonunun ve NaOH Bekletme Süresinin Kemik Greftlerinde Kullanılan CHA/PCL Kompozitlerinin Biyolojik Yıkımına Etkisi

Amaç: NaOH konsantrasyonu ve bekletme süresinin ağırlıkça % 19 kalsine edilmemiș karbonlanmıș hidroksiapatit (CHA)/Poly- ε -kaprolakton (PCL)’nin kütle kaybına etkisinin incelenmesi NaOH uygulamasının ardından gerçekleștiren fosfatla tamponlanmıș salin (PBS) çalıșmasında, kompozitlerin biyolojik yıkımlarının analizi ve kemik grefti uygulanabilirliklerinin incelenmesi Gereç ve Yöntemler: CHA ıslak çökeltme yöntemi kullanılarak üretilmiștir. CHA/PCL kompozit, ikiz vidalı ekstrüzyon ve enjeksiyon kalıplama ile hazırlanmıștır. Ağırlıkça % 19 kalsine edilmemiș CHA/PCL’in biyolojik yıkım hızını arttırmak amacıyla, numuneler farklı sürelerde, çeșitli konsantrasyonlardaki NaOH solüsyonları (Sigma Aldrich, UK) ile muamele edilmiștir. Daha sonra biyolojik yıkım hızları PBS içinde analiz edilmiștir. Bulgular: NaOH konsantrasyonunun 3 M‘dan 5 M’a artması, NaOH ve PBS’de muhafaza edildikten sonra numunelerin % ağırlık kaybını arttırmıștır. Ancak, 5 M NaOH’da numuneleri 1 ve 3 gün bulundurmak % ağırlık değișimini etkilememiștir. Sonuç: NaOH konsantrasyonunun artması ile numunelerin biyolojik yıkımları hızlandırılmıștır. Ağırlıkça % 19 kalsine edilmemiș CHA/PCL’in 1 gün sureyle 3 M NaOH içinde muhafaza edilmesi, PBS çalıșmalarında daha kontrollü bir șekilde biyolojik yıkıma uğradıklarını göstermiștir.

Effect Of NaOH Concentration On The Degradation Properties Of CHA/PCL Composites For Bone Replacement Applications

Aim: To study the effect of NaOH concentration and duration of treatment on the % mass loss of 19 wt% uncalcined carbonated hydroxyapatite (CHA)/Poly-ε -caprolactone (PCL)

___

  • Aho, Heikkila. Clinical Applications of Bone Allografts and Substitutes. Phillips GO, editor. Singapore: World Scientific Publishing Co. Ptc. Ltd.; 2005.
  • Hench LL, Paschall HA. Direct chemical bond of bioactive glass- ceramic materials to bone and muscle. Journal of Biomedical Materials Research. 1973;7:25-42.
  • Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH. Laser surface modification of poly(epsilon- caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials. 2005;26:763-769.
  • Chouzouri G, Xanthos M. Degradation of aliphatic polyesters in the presence of inorganic fillers. Journal of Plastic Film & Sheeting. 2007;23:19-36.
  • Chen DR, Bei JZ, Wang SG. Polycaprolactone microparticles and their biodegradation. Polymer Degradation and Stability. 2000;67:455- 459.
  • Lowry KJ, Hamson KR, Bear L, Peng YB, Calaluce R, Evans ML, et al. Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Materials Research. 1997;36:536-41.
  • Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomaterialia. 2007;3:745-756.
  • Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chemical Society Reviews. 2009;38:3484-3504.
  • Yeo A, Sju E, Rai B, Teoh SH. Customizing the Degradation and Load-Bearing Profile of 3D Polycaprolactone-Tricalcium
  • Phosphate Scaffolds Under Enzymatic and Hydrolytic Conditions. Journal of Biomedical Materials Research Part B- Applied Biomaterials. 2008;87B:562- 569.
  • Lam CXF, Savalani MM, Teoh SH, Hutmacher DW. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomedical Materials. 2008;3(3).
  • beta-tricalcium phosphate and poly (L
  • lactide-co-glycolide-epsilon
  • Ang KC, Leong KF, Chua CK, al. Development of guided bone Chandrasekaran M. Compressive properties and degradability of poly(epsilon- caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. Journal of Biomedical Materials Research Part A. 2007;80A:655-660.
  • Rich J, Jaakkola T, Tirri T, Narhi T,
  • Tsuji H, Ishida T. Poly(L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly(L- lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. Journal of Applied Polymer Science. 2003;87:1628-1633.
  • Yeo A, Wong WJ, Khoo HH, Teoh SH. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: An in vitro and in vivo characterization. Journal of Biomedical Materials Research Part A. 2010;92A:311-321.
  • Htay M. Water vapour transmission AB-type carbonate-substituted hydroxyapatite. Journal of Biomedical and degradation properties of biaxiallt stretched PCL films and cell-permeable membranes 2004.
  • Azevedo MC, Reis RL, Claase BM, Grijpma DW, Feijen J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. Journal of Materials Science-Materials in Medicine. 2003;14:103-107.
  • Tsuji H, Suzuyoshi K, Tezuka Y, Ishida T. Environmental degradation of biodegradable polyesters: 3. Effects of alkali treatment on biodegradation of poly(epsilon-caprolactone) and poly (R)-3-hydroxybutyrate films in controlled soil. Journal of Polymers and the Environment. 2003;11:57-65.
  • Kikuchi M, Koyama Y, Yamada T, caprolactone) composites. Biomaterials. 2004;25:5979-5986. Yli-Urpo A, Seppala J. In vitro evaluation of poly(epsilon- caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials. 2002;23:2143-2150.
  • Rai B, Ho KH, Lei Y, Si-Hoe KM, Teo CMJ, bin Yacob K, et al. Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: A pilot study. Journal of Oral and Maxillofacial Surgery. 2007;65:2195-2205. Materials Research. 2002;59:697-708.
  • Wilberforce SIJ, Finlayson CE, Best SM, Cameron RE. The influence of the compounding process and testing conditions on the compressive mechanical properties of poly(D,L- lactide-co-glycolide)/alpha-tricalcium phosphate nanocomposites. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4:1081-1089.