Aşıların Tarihçesi ve Yeni Aşı Stratejileri

1796 yılında Edward Jenner ile başlayan aşı serüveni, tıp tarihinin en büyük küresel başarılarından biri olarak kabul edilmekte ve günümüzde her yıl aşılama ile 2-3 milyon insanın hayatı kurtarılmaktadır. Bu gerçeğe rağmen yine her yıl tüm dünyada 1,5 milyondan fazla insan aşı ile önlenebilir hastalıklar yüzünden kaybedilmektedir. Günümüzde uluslararası hareketliliğin artışının bir getirisi olarak enfeksiyon hastalıkları sınır tanımamaktadır. Tüm dünya buna en son 2019 yılının sonunda Çin’in Wuhan kentinde ortaya çıkan şiddetli akut solunum sendromu koronavirüs-2 salgının kısa bir süre içerisinde pandemiye dönüşmesi ile tanık olmuştur. Bu ve benzeri yeni ortaya çıkan ve henüz aşısı olmayan enfeksiyon hastalıkları olduğu gibi, yadsınamaz başarılarına rağmen mevcut aşı teknolojilerinin önleyemediği ve dünya genelinde mortalitenin büyük payını oluşturan başka enfeksiyon hastalıkları da bulunmaktadır. Bu hastalıklara karşı çok yönlü aşı geliştirme çalışmaları sürdürülmekte ve temel olarak yeni dağıtım platformları, yeni adjuvanlar, antijen sunumunda yeni yaklaşımlar ve yeni kararlı, etkin antijen üretimi alanlarına yoğunlaşılmaktadır. Bu derlemede öncelikle aşının tarih boyunca gelişiminden kısaca bahsedilecek daha sonra aşı çalışmalarında yer alan yeni tasarım/teknolojilere, dağıtım platformlarına ve uygulama yollarına değinilecektir.

History of Vaccines and New Vaccine Strategies

Edward Jenner’s invention of vaccination in 1796 has been considered as one of the greatest accomplishments in the history of medicine and vaccination currently prevents 2 to 3 million deaths every year. Despite this, more than 1,5 million people worldwide die from vaccine-preventable diseases each year. In today’s increasingly mobile lifestyle, infectious diseases know no boundaries. The most recent example to this is the fact that severe acute respiratory syndrome coronavirus-2 which originated in Wuhan, China has become the reason of a global pandemic in a very short time. As well as these and similar infectious diseases that have emerged and have not yet been vaccinated, there are other infectious diseases that existing vaccine technologies cannot prevent despite their undeniable success and constitute a large share of mortality worldwide. Versatile vaccine development studies are being done against these diseases and fields of new delivery platforms, new adjuvants, new approaches in antigen presentation and new stable and efficient antigen production are being focused on. In this review, firstly, the developmental history of vaccine is mentioned briefly and new designs and technologies, distribution platforms and application methods in vaccine studies are explained.

___

  • 1. Riedel S. Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent). 2005;18:21‐25.
  • 2. World Health Organization. The global eradication of smallpox: final report of the Global Commission for the Certification of Smallpox Eradication, Geneva, December 1979;1-122.
  • 3. Loomis RJ, Johnson PR. Emerging Vaccine Technologies. Vaccines (Basel). 2015;3:429‐447.
  • 4. De Gregorio E, Rappuoli R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol. 2014;14:505-514.
  • 5. Stanberry LR, Strugnell R. Vaccines of the future. Perspectives in Vaccinology. 2011;1:151‐199.
  • 6. Bragazzi NL, Gianfredi V, Villarini M, et al. Vaccines Meet Big Data: Stateof- the-Art and Future Prospects. From the Classical 3Is (“Isolate-Inactivate- Inject”) Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front Public Health. 2018;6:62.
  • 7. Rhee JH. Towards Vaccine 3.0: new era opened in vaccine research and industry. Clin Exp Vaccine Res. 2014;3:1-4.
  • 8. Lepenies B, Yin J, Seeberger PH. Applications of synthetic carbohydrates to chemical biology. Curr Opin Chem Biol. 2010;14:404-411.
  • 9. Pardee K, Slomovic S, Nguyen PQ, et al. Portable, On-Demand Biomolecular Manufacturing. Cell. 2016;167:248-259.
  • 10. Türkiye EKMUD- Erişkin Bağışıklama Rehberi Türkiye Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Uzmanlık Derneği. 2. Güncelleme-2016.
  • 11. Plotkin S, Orenstein W, Offit P. A short history of vaccines. In: Plotkin SA, Orenstein WA, Offit PA (Eds.) Plotkin’s Vaccines, sixthed, Saunders Elsevier, 2018:1-8.
  • 12. Bagnoli F, Baudner B, Mishra RP, et al. Designing the next generation of vaccines for global public health. OMICS. 2011;15:545-566.
  • 13. Seib KL, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect. 2012;18:109-116.
  • 14. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000;3:445-450.
  • 15. Pizza M, Scarlato V, Masignani V, et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science. 2000;287:1816-1820.
  • 16. Mora M, Veggi D, Santini L, et al. Reverse vaccinology. Drug Discov Today. 2003;8:459-464.
  • 17. Roldão A, Mellado MC, Castilho LR, et al. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9:1149-1176.
  • 18. Akahata W, Yang ZY, Andersen H, et al. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med. 2010;16:334-338.
  • 19. Mohsen MO, Zha L, Cabral-Miranda G, et al. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123-132.
  • 20. Fuenmayor J, Gòdia F, Cervera L. Production of virus-like particles for vaccines. N Biotechnol. 2017;39:174-180.
  • 21. Kaiser J. A one-size-fits-all flu vaccine? Science. 2006;312:380-382.
  • 22. López-Macías C. Virus-like particle (VLP)-based vaccines for pandemic influenza: performance of a VLP vaccine during the 2009 influenza pandemic. Hum Vaccin Immunother. 2012;8:411-414.
  • 23. Lee V, Rodriguez C, Shupe E-M, et al. Phase II study of GM-CSF secreting allogeneic pancreatic cancer vaccine (GVAX) with PD-1 blockade antibody and stereotactic body radiation therapy (SBRT) for locally advanced pancreas cancer (LAPC). J Clin Oncol 2017: 35:15_suppl.
  • 24. Tryggestad AA, Bigalke I, Axcrona K, et al . 21 – results from a first in man phase i/ii adjuvant dendritic cell vaccine study in high risk prostate cancer patients following radical surgery. Cytotherapy. 2017;19:15.
  • 25. Phuphanich S, Wheeler CJ, Rudnick JD, et al. Phase I trial of a multiepitope- pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013;62:125-135.
  • 26. Plosker GL. Sipuleucel-T: in metastatic castration-resistant prostate cancer. Drugs. 2011;71:101-108.
  • 27. Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol. 2019;196:189-204.
  • 28. Francis MJ. Recent Advances in Vaccine Technologies. Vet Clin North Am Small Anim Pract. 2018;48:231-241.
  • 29. Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A. 1999;96:91-96.
  • 30. Redding L, Weiner DB. DNA vaccines in veterinary use. Expert Rev Vaccines. 2009;8:1251-1276.
  • 31. Bettinger T, Carlisle RC, Read ML, et al. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 2001;29:3882-3891.
  • 32. Grunwitz C, Kranz LM. mRNA Cancer Vaccines-Messages that Prevail. Curr Top Microbiol Immunol. 2017;405:145-164.
  • 33. Jacobson JM, Routy JP, Welles S, et al. Dendritic Cell Immunotherapy for HIV-1 Infection Using Autologous HIV-1 RNA: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Acquir Immune Defic Syndr. 2016;72:31- 38.
  • 34. Richner JM, Himansu S, Dowd KA, et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell. 2017;168:1114-1125.
  • 35. World Health Organization. Draft landscape of COVID-19 candidate vaccines. 2020 [https://www.who.int/who-documents-detail/draft-landscape-ofcovid- 19-candidate-vaccines]. (Erişim tarihi: 30 MAYIS 2020).
  • 36. Lurie N, Saville M, Hatchett R, et al. Developing Covid-19 Vaccines at Pandemic Speed. N Engl J Med. 2020;382:1969-1973.
  • 37. Subbarao K. SARS-CoV-2: A New Song Recalls an Old Melody. Cell Host Microbe. 2020;27:692-694.
  • 38. Li W, Joshi MD, Singhania S, et al. Peptide Vaccine: Progress and Challenges. Vaccines (Basel). 2014;2:515-536.
  • 39. González-Fernández A, Faro J, Fernández C. Immune responses to polysaccharides: lessons from humans and mice. Vaccine. 2008;26:292-300.
  • 40. Perrie Y, Mohammed AR, Kirby DJ, et al. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm. 2008;364:272-280.
  • 41. Schutze MP, Leclerc C, Jolivet M, et al. Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J Immunol. 1985;135:2319- 2322.
  • 42. Bröker M, Berti F, Schneider J, et al. Polysaccharide conjugate vaccine protein carriers as a “neglected valency” - Potential and limitations. Vaccine. 2017;35:3286-3294.
  • 43. Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol. 2015;34:217-224.
  • 44. Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7:3926-3938.
  • 45. Gregory AE, Judy BM, Qazi O, et al. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine. 2015;11:447-456.
  • 46. Ginsberg BA, Gallardo HF, Rasalan TS, et al. Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particlemediated epidermal delivery with intramuscular injection. Clin Cancer Res. 2010;16:4057-4065.
  • 47. Roy MJ, Wu MS, Barr LJ, et al. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particlemediated administration of a hepatitis B virus DNA vaccine. Vaccine. 2000;19:764-778.
  • 48. Sun B, Ji Z, Liao YP, et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano. 2013;7:10834-10849.
  • 49. Maquieira Á, Brun EM, Garcés-García M, et al. Aluminum oxide nanoparticles as carriers and adjuvants for eliciting antibodies from non-immunogenic haptens. Anal Chem. 2012;84:9340-9348.
  • 50. Fox CB, Kramer RM, Barnes V L, et al. Working together: interactions between vaccine antigens and adjuvants. Ther Adv Vaccines. 2013;1:7-20.
  • 51. Lin Y, Wang X, Huang X, et al. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines. 2017;16:895-906.
  • 52. Masson JD, Thibaudon M, Bélec L, et al. Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines. 2017;16:289-299.
  • 53. Niut Y, Popatt A, Yu M, et al. Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther Deliv. 2012;3:1217-1237.
  • 54. Parra J, Abad-Somovilla A, Mercader JV, et al. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J Control Release. 2013;170:242-251.
  • 55. Li S, Pasc A, Fierro V, et al. Hollow carbon spheres, synthesis and applications – a review. J Mater Chem A. 2016;4:12686-12713.
  • 56. Kim M-G, Park JY, Shon Y, et al. Nanotechnology and vaccine development. Asian J Pharm Sci. 2014;9:227-235.
  • 57. Wang T, Zou M, Jiang H, et al. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci. 2011;44:653-659.
  • 58. Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine. 2014;32:327-337.
  • 59. Zeng Q, Li H, Jiang H, et al. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials. 2017;122:105-113.
  • 60. Walters AA, Krastev C, Hill AV, et al. Next generation vaccines: single-dose encapsulated vaccines for improved global immunisation coverage and efficacy. J Pharm Pharmacol. 2015;67:400-408.
  • 61. Bailey BA, Desai KH, Ochyl LJ, et al. Self-encapsulating Poly(lactic-coglycolic acid) (PLGA) Microspheres for Intranasal Vaccine Delivery. Mol Pharm. 2017;14:3228-3237.
  • 62. Gordon D, Kelley P, Heinzel S, et al. Immunogenicity and safety of Advax™, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: a randomized controlled Phase 1 study. Vaccine. 2014;32:6469-6477.
  • 63. Heddle R, Russo P, Petrovsky N, et al. Immunotherapy - 2076. A controlled study of delta inulin-adjuvanted honey bee venom immunotherapy. World Allergy Organization Journal 2013 6( Suppl 1):P158.
  • 64. Brault AC, Domi A, McDonald EM, et al. A Zika Vaccine Targeting NS1 Protein Protects Immunocompetent Adult Mice in a Lethal Challenge Model. Sci Rep. 2017;7:14769.
  • 65. Jong WS, Daleke-Schermerhorn MH, Vikström D, et al. An autotransporter display platform for the development of multivalent recombinant bacterial vector vaccines. Microb Cell Fact. 2014;13:162.
  • 66. Kotton CN, Lankowski AJ, Scott N, et al. Safety and immunogenicity of attenuated Salmonella enterica serovar Typhimurium delivering an HIV-1 Gag antigen via the Salmonella Type III secretion system. Vaccine. 2006;24:6216-6224.
  • 67. Gerritzen MJH, Martens DE, Wijffels RH,et al. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol Adv. 2017;35:565-574.
  • 68. Shirley M, Dhillon S. Bivalent rLP2086 Vaccine (Trumenba(®)): A Review in Active Immunization Against Invasive Meningococcal Group B Disease in Individuals Aged 10-25 Years. BioDrugs. 2015;29:353-361.
  • 69. Carter NJ. Multicomponent meningococcal serogroup B vaccine (4CMenB; Bexsero(®)): a review of its use in primary and booster vaccination. BioDrugs. 2013;27:263-274.
  • 70. Morein B, Sundquist B, Höglund S, et al. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature. 1984;308:457-460.
  • 71. Drane D, Gittleson C, Boyle J, et al. ISCOMATRIX adjuvant for prophylactic and therapeutic vaccines. Expert Rev Vaccines. 2007;6:761-772.
  • 72. Cebon JS, McArthur GA, Chen W, et al . Randomized, doubleblind Phase II trial of ny-eso-1 iscomatrix vaccine and iscomatrix adjuvant alone in patients with resected stage IIc, III, or IV malignant melanoma. J Clin Oncol. 2014;32:9050.
  • 73. Khan AY, Talegaonkar S, Iqbal Z, et al. Multiple emulsions: an overview. Curr Drug Deliv. 2006;3:429-443.
  • 74. Saroja Ch, Lakshmi P, Bhaskaran S. Recent trends in vaccine delivery systems: A review. Int J Pharm Investig. 2011;1:64-74.
  • 75. O’Hagan DT, Ott GS, Nest GV, et al. The history of MF59(®) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines. 2013;12:13-30.
  • 76. Alving CR, Beck Z, Matyas GR, et al. Liposomal adjuvants for human vaccines. Expert Opin Drug Deliv. 2016;13:807-816.
  • 77. Hills T, Jakeman PG, Carlisle RC, et al. A Rapid-Response Humoral Vaccine Platform Exploiting Pre-Existing Non-Cognate Populations of Anti-Vaccine or Anti-Viral CD4+ T Helper Cells to Confirm B Cell Activation. PLoS One. 2016;11:0166383.
  • 78. Matyas GR, Mayorov AV, Rice KC, et al. Liposomes containing monophosphoryl lipid A: a potent adjuvant system for inducing antibodies to heroin hapten analogs. Vaccine. 2013;31:2804-2810.
  • 79. Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines. 2014;2:159-182.
  • 80. Allison AG, Gregoriadis G. Liposomes as immunological adjuvants. Nature. 1974;252:252.
  • 81. Bovier PA. Epaxal: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines. 2008;7:1141-1150.
  • 82. Concha C, Cañas R, Macuer J, et al. Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines? Vaccines (Basel). 2017;5:14.
  • 83. Sala F, Manuela Rigano M, Barbante A, et al. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine. 2003;21:803-808.
  • 84. Azegami T, Itoh H, Kiyono H, et al. Novel transgenic rice-based vaccines. Arch Immunol Ther Exp (Warsz). 2015;63:87-99.
  • 85. Specht EA, Mayfield SP. Algae-based oral recombinant vaccines. Front Microbiol. 2014;5:60.
  • 86. Zheng Z, Diaz-Arévalo D, Guan H, et al. Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother. 2018;14:1717-1733.
  • 87. Su F, Patel GB, Hu S, et al. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccin Immunother. 2016;12:1070-1079.
  • 88. Sasaki S, Sumino K, Hamajima K, et al. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J Virol. 1998;72:4931-4939.
  • 89. Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol. 2018;9:431.
  • 90. Pavot V, Rochereau N, Genin C, et al. New insights in mucosal vaccine development. Vaccine. 2012;30:142-154.
  • 91. Kozlowski PA, Williams SB, Lynch RM, et al. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J Immunol. 2002;169:566-574.
  • 92. Kim-Schulze S, Kim HS, Wainstein A, et al. Intrarectal vaccination with recombinant vaccinia virus expressing carcinoembronic antigen induces mucosal and systemic immunity and prevents progression of colorectal cancer. J Immunol. 2008;181:8112-8119.
  • 93. Shakya AK, Chowdhury MYE, et al. Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release. 2016;240:394-413.
  • 94. Nicolas JF, Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines. 2008;7:1201- 1214.
  • 95. Kim YC, Quan FS, Yoo DG, et al. Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J Infect Dis. 2010;201:190-198.
  • 96. Strid J, Hourihane J, Kimber I, et al. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur J Immunol. 2004;34:2100-2109.
  • 97. Pielenhofer J, Sohl J, Windbergs M, et al. Current Progress in Particle-Based Systems for Transdermal Vaccine Delivery. Front Immunol. 2020;11:266.
  • 98. Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics. 2015;7:438-470.
  • 99. Engelke L, Winter G, Hook S, et al. Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine. 2015;33:4663-4674.
  • 100. Wang J, Peng Y, Xu H, et al. The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation. AAPS PharmSciTech. 2020;21:225.
Ankara Üniversitesi Tıp Fakültesi Mecmuası-Cover
  • Başlangıç: 1947
  • Yayıncı: Erkan Mor
Sayıdaki Diğer Makaleler

Akut Böbrek Hasarı Olan Kritik Hastalarda Yaşın Sonlanıma Etkisi Var mı?

Neriman Defne ALTINTAŞ, Leyla TALAN

Antenatal Hidronefroza Yaklaşım

Kutay BAHADIR, Gülnur GÖLLÜ

Türk Popülasyonunda XRCC1 (Arg399Gln) ve XRCC3 (Thr241Met) Polimorfizmlerinin Genotip Dağılımı ve Allel Frekanslarının Belirlenmesi

Esma SÖYLEMEZ, Gülden Zehra OMURTAG, Eren ÖZCAĞLI

Nadir Bir Olgunun Yönetimi: Kalıcı Mülleryen Kanal Sendromu ile İlişkili Transvers Testiküler Ektopi

Mehmet Semih DEMİRTAŞ, Mustafa TUŞAT

Sialendoskopide Başarının Göstergeleri

Levent YÜCEL, Zahide ÇİLER BÜYÜKATALAY, Ozan Bağış ÖZGÜRSOY

Pertrokanterik Kırıklarda Proksimal Femoral Çivilemede (PFÇ) “Cut-out” Komplikasyonu Sonrası Kalça Artroplastisine Geçiş

Abdullah MERTER, Kerem BAŞARIR, Hakan KOCAOĞLU, Mustafa Onur KARACA, Emre Anıl ÖZBEK, Mahmut KALEM

Acil Servise Başvuran Hastaların Direkt ve Endirekt Maliyet Analizi

Pınar KIR, Ahmet Burak OĞUZ, Onur POLAT, Ebru Yüksel HALİLOĞLU, Müge GÜNALP ENEYLİ, Sinan GENÇ, Ayça KOCA

Deneysel Parsiyel Hepatektomi Modelinde Yorucu Egzersizin Karaciğer Rejenerasyonu Üzerine Etkisi

Elvan ONUR KIRIMKER, Süleyman Utku ÇELİK, Seyit Mehmet Sadık ERSÖZ, Mehmet Kaan KARAYALÇIN

Aşıların Tarihçesi ve Yeni Aşı Stratejileri

Selin Gamze KILIÇ, İştar DOLAPÇI

Takılabilir Kardiyoverter Defibrilatör ile Tedavi Edilen Kalp Yetersizliği Hastalarında Mortaliteyi Belirleyen Laboratuvar Paramaterleri: Tek Merkezli, Uzun Dönemli Sonuçlar

Sedat SAKALLI, Veysel Özgür BARIŞ, Ahmet BÜYÜK, Fatih POYRAZ, Murat Can GÜNEY