YAN ÜRÜN OLARAK FINDIK ZARI: BESİN BİLEŞİMİ, ANTİOKSİDAN AKTİVİTE, FENOLİK BİLEŞİK PROFİLİ VE DİYET LİFİ İÇERİĞİ

Amaç: Bu çalışmanın amacı tarımsal bir gıda yan ürünü olan fındık zarının fonksiyonel gıda bileşeni ve doğal antioksidanların kaynağı olarak incelenmesidir.Gereç ve Yöntem: Bu çalışmada, ultrason destekli ekstraksiyon (UAE) hem diyet lifi hem de fenolik bileşiklerin daha kısa analiz süresi için kullanılmıştır. Toplam diyet lifi içeriği, hem Analitik Kimya Birliği (AOAC) metodu hem de enzimatik-kimyasal metot kullanılarak tanımlanmış ve kıyaslanmıştır.Sonuç ve Tartışma: Sonuçlara bakıldığında fındık zarının, hem CE (1413.32 mg gallik asit eşdeğeri (GAE) /g kuru madde) hem de UAE (1420.86 mg GAE/g kuru madde) ile elde edilen ekstraktlarında da oldukça yüksek fenolik bileşik içeriğine sahip olduğu görülmüştür. UAE ile elde edilen ekstraktın her iki antioksidan aktivite metotlarında CE ile elde edilen ekstraktından daha yüksek antioksidan aktiviteye sahip olduğu bulunmuştur. CE ile elde edilen ekstrakta 3 fenolik bileşen tanımlanırken, UAE ile elde edilen ekstrakta da 4 fenolik bileşen tanımlanmıştır. Enzimatik-kimyasal metotta, CE ile elde edilen ekstraktın toplam diyet lifi içeriği %68.93, UAE ile elde edilen ekstraktınki % 70,69 olarak bulunmuştur. Bu çalışmanın sonuçları, fındık zarının düşük kalorili, yüksek lif içeriğine sahip ve antioksidanca zengin gıdaların, gıda desteklerinin ve ilaç etken maddelerinin hazırlanmasında kullanılabileceğini göstermektedir.

HAZELNUT TESTA AS A BY-PRODUCT: NUTRITIONAL COMPOSITION, ANTIOXIDANT ACTIVITY, PHENOLIC COMPOUND PROFILE AND DIETARY FIBER CONTENT

Objective: The aim of this study is to determine hazelnut testa which is a good example of agro-food by-products as a potential source of natural antioxidants and functional food ingredients.

___

  • Del Rio, D., Calani, L., Dall’Asta, M., Brighenti, F. (2011). Polyphenolic composition of hazelnut skin, Journal of Agriculture and Food Chemistry, 59, 9935–9941.
  • Yang, J., Liu, R. H., Halim, L. (2009). Antioxidant and antiproliferative activities of common edible nut seeds. LWT-Food Science and Technology, 42(1), 1-8.
  • Contini, M., Baccelloni, S., Massantini, R., Anelli, G. (2008). Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chemistry, 110(3), 659-669.
  • Nicolotti, L., Cordero, C., Bicchi, C., Rubiolo, P., Sgorbini, B., Liberto, E. (2013). Volatile profiling of high quality hazelnuts (Corylus avellana L.): chemical indices of roasting. Food chemistry, 138(2-3), 1723-1733.
  • Cristofori, V., Ferramondo, S., Bertazza, G., Bignami, C. (2008). Nut and kernel traits and chemical composition of hazelnut (Corylus avellana L.) cultivars. Journal of the Science of Food and Agriculture, 88(6), 1091-1098.
  • Sang, S., Lapsley, K., Jeong, W. S., Lachance, P. A., Ho, C. T., Rosen, R. T. (2002). Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). Journal of Agricultural and Food Chemistry, 50(8), 2459-2463.
  • Saklar, S., Katnas, S., Ungan, S. (2001). Determination of optimum hazelnut roasting conditions. International journal of food science & technology, 36(3), 271-281.
  • Monagas, M., Garrido, I., Lebrón-Aguilar, R., Bartolome, B., Gómez-Cordovés, C. (2007). Almond (Prunus dulcis (Mill.) da Webb) skins as a potential source of bioactive polyphenols. Journal of agricultural and food chemistry, 55(21), 8498-8507.
  • Monagas, M., Garrido, I., Lebrón-Aguilar, R., Gómez-Cordovés, M. C., Rybarczyk, A., Amarowicz, R., Bartolomé, B. (2009). Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. Journal of Agricultural and Food Chemistry, 57(22), 10590-10599.
  • Alasalvar, C., Karamać, M., Kosinska, A., Rybarczyk, A., Shahidi, F., Amarowicz, R. (2009). Antioxidant activity of hazelnut skin phenolics. Journal of Agricultural and Food Chemistry, 57(11), 4645-4650.
  • Contini, M., Baccelloni, S., Frangipane, M. T., Merendino, N., Massantini, R. (2012). Increasing espresso coffee brew antioxidant capacity using phenolic extract recovered from hazelnut skin waste. Journal of Functional Foods, 4(1), 137-146.
  • Esfahlan, A. J., Jamei, R., Esfahlan, R. J. (2010). The importance of almond (Prunus amygdalus L.) and its by-products. Food chemistry, 120(2), 349-360.
  • Kornsteiner, M., Wagner, K. H., Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food chemistry, 98(2), 381-387.
  • Kendall, C. W., Esfahani, A., Jenkins, D. J. (2010). The link between dietary fibre and human health. Food Hydrocolloids, 24(1), 42-48.
  • Colin-Henrion, M., Mehinagic, E., Renard, C. M., Richomme, P., Jourjon, F. (2009). From apple to applesauce: Processing effects on dietary fibres and cell wall polysaccharides. Food Chemistry, 117(2), 254-260.
  • Hollmann, J., Themeier, H., Neese, U., Lindhauer, M. G. (2013). Dietary fibre fractions in cereal foods measured by a new integrated AOAC method. Food chemistry, 140(3), 586-589.
  • Lainas, K., Alasalvar, C., Bolling, B. W. (2016). Effects of roasting on proanthocyanidin contents of Turkish Tombul hazelnut and its skin. Journal of Functional Foods, 23, 647-653.
  • Bertolino, M., Belviso, S., Dal Bello, B., Ghirardello, D., Giordano, M., Rolle, L., Gerbi, V. Zeppa, G. (2015). Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT-Food Science and Technology, 63(2), 1145-1154.
  • Odabaş, H. İ., Koca, I. (2016). Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Industrial Crops and Products, 91, 114-124.
  • AOAC (Assosiation of Analytical Chemistry). (2006). Moisture in nuts, Official methods of AOAC, 18 th edition. Washington, DC.
  • Folch, J., Lees, M., Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497-509.
  • Shahidi, F., Alasalvar, C., Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of Agricultural and Food Chemistry, 55(4), 1212-1220.
  • Abe, L. T., Lajolo, F. M., Genovese, M. I. (2010). Comparison of phenol content and antioxidant capacity of nuts. Food Science and Technology, 30, 254-259.
  • Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • Brand-Williams, W., Cuvelier, M. E., Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • Alasalvar, C., Karamać, M., Amarowicz, R., Shahidi, F. (2006). Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. Journal of Agricultural and Food Chemistry, 54(13), 4826-4832.
  • Mandalari, G., Tomaino, A., Arcoraci, T., Martorana, M., Turco, V. L., Cacciola, F., Rich, G. T., Bisignano, C., Saija, A., Dugo, P., Cross, K. L., Parker, M. L., Waldron, K. W. Wickham, M. S. J. (2010). Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). Journal of Food Composition and Analysis, 23(2), 166-174.
  • AOAC (1985). Total dietary fibre in foods. Official methods of analysis of AOAC, 14th edition, Washington, DC.
  • AOAC (1991). Total, soluble, and insoluble dietary fibre in dood, Official methods of AOAC. 15 th edition, Washington, DC.
  • Englyst, H. N., Quigley, M. E., Hudson, G. J. (1994). Determination of dietary fibre as non-starch polysaccharides with gas–liquid chromatographic, high-performance liquid chromatographic or spectrophotometric measurement of constituent sugars. Analyst, 119(7), 1497-1509.
  • Theander, O., Aman, P., Westerlund, E., Andersson, R., Pettersson, D. (1995). Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): collaborative study. Journal of AOAC International, 78(4), 1030-1044
  • Uçar, G., Balaban, M. (2004). Hydrolysis of polysaccharides with 77% sulfuric acid for quantitative saccharification. Turkish Journal of Agriculture and Forestry, 27(6), 361-365.
  • Scott, R. W. (1979). Colorimetric determination of hexuronic acids in plant materials. Analytical chemistry, 51(7), 936-941.
  • Siriwardhana, S. S., Shahidi, F. (2002). Antiradical activity of extracts of almond and its by‐products. Journal of the American Oil Chemists' Society, 79(9), 903-908.
  • Locatelli, M., Travaglia, F., Coisson, J. D., Martelli, A., Stevigny, C., Arlorio, M. (2010). Total antioxidant activity of hazelnut skin (Nocciola Piemonte PGI): Impact of different roasting conditions. Food chemistry, 119(4), 1647-1655
  • Singha, I., Das, S. K. (2015). Free radical scavenging properties of skin and pulp extracts of different grape cultivars in vitro and attenuation of H2O2-induced oxidative stress in liver tissue ex vivo. Indian Journal of Clinical Biochemistry, 30(3), 305-312.
  • Trox, J., Vadivel, V., Vetter, W., Stuetz, W., Kammerer, D. R., Carle, R., Scherbaum, V., Gola, U., Nohr, D., Biesalski, H. K. (2011). Catechin and epicatechin in testa and their association with bioactive compounds in kernels of cashew nut (Anacardium occidentale L.). Food chemistry, 128(4), 1094-1099.
  • Roginsky, V., Lissi, E. A. (2005). Review of methods to determine chain-breaking antioxidant activity in food. Food chemistry, 92(2), 235-254.
  • Wijeratne, S. S., Amarowicz, R., Shahidi, F. (2006). Antioxidant activity of almonds and their by-products in food model systems. Journal of the American Oil Chemists' Society, 83(3), 223.
  • Yurttas, H. C., Schafer, H. W., Warthesen, J. J. (2000). Antioxidant activity of nontocopherol hazelnut (Corylus spp.) phenolics. Journal of food science, 65(2), 276-280.
  • Champ, M., Langkilde, A. M., Brouns, F., Kettlitz, B., Collet, Y. L. B. (2003). Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutrition Research Reviews, 16(1), 71-82.
  • Craeyveld, V. V., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A., Courtin, C. M. (2009). Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. Journal of Agricultural and Food Chemistry, 57(18), 8467-8473.
  • Kamal-Eldin, A., Lærke, H. N., Knudsen, K. E., Lampi, A. M., Piironen, V., Adlercreutz, H., Katina, K., Poutanen, K., Åman, P. (2009). Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food & Nutrition Research, 53(1), 1912.
  • Ramulu, P., Rao, P. U. (2003). Total, insoluble and soluble dietary fiber contents of Indian fruits. Journal of food composition and analysis, 16(6), 677-685.
  • Ramírez-Truque, C., Esquivel, P., Carle, R. (2011). Neutral sugar profile of cell wall polysaccharides of pitaya (Hylocereus sp.) fruits. Carbohydrate polymers, 83(3), 1134-1138.
  • Melton, L. D., Smith, B. G. (2001). Determination of the uronic acid content of plant cell walls using a colorimetric assay. Current Protocols in Food Analytical Chemistry.
  • Yamazaki, E., Fujiwara, T., Kurita, O., Ikeda, J., Matsumura, Y. (2008). Comparison of pectins from the alcohol-insoluble residue of Japanese pepper (Zanthoxylum piperitum DC.) fruit, a major by-product of antioxidant extraction. Food science and technology research, 14(1), 18-24.
  • Silva, A. S., Nunes, C., Coimbra, M. A., Guido, L. F. (2014). Composition of pectic polysaccharides in a Portuguese apple (Malus domestica Borkh. cv Bravo de Esmolfe). Scientia Agricola, 71(4), 331-336.