The Role of Superoxide Dismutase (SOD) Activity And Malondialdehyde (MDA) Levels in The Differentiation of Benign-Malign Pleural Effusion

Giriş:Serbest radikaller birçok hastalığın patogenezinde yer alan yüksek oranda oksijen içeren moleküllerdir. Serbest radikal oluşumu ile antioksidan savunma sistemi arasında kritik bir denge vardır. Oksidatif stresin malignensi ile birlikte olduğu bilinmektedir. Pleural effüzyon (PE) bronkojenik malignensi komplikasyonu olarak nadir değildir fakat diğer bazı hastalıklarda da PE görülebilir. Bu çalışmanın amacı malign ve benign hastalarda pleural sıvıdaki malondialdehide (MDA) seviyesi ve antioksidant enzim süperoksid dismutaz (SOD) aktivitesinin arasında herhangi bir fark olup olmadığını saptamaktır. Gereç ve Yöntem:Bu çalışmaya kırksekiz hasta dahil edildi. Grup I’de 24 malign pleural effüzyonlu hasta ve grup II’de ise 24 benign pleural effüzyonlu hasta vardı. MDA seviyesi ve SOD aktivitesi pleural sıvıda incelendi. Sonuçlar:MDA seviyesi Grup I’de (135,15 ± 18,95 nmol/ml) group II’ ye göre belirgin olarak yüksektir (67,35 ± 13,02 nmol/ml) (p<0,001). SOD aktivitesi ise grup I’de grup II ile karşılaştırıldığında anlamlı Tartışma: Bu sonuçlarımız reaktif oksijen türlerinin malign pleural sıvıda SOD aktivitesi ile birlikte arttığını göstermektedir. Bu parametreler malign efüzyonu bening efüzyondan ayırmak için non-spesifik bir diagnostik markır olabili
Anahtar Kelimeler:

Pleural efüzyon, SOD, MDA

The Role Of Superoxide Dismutase(SOD) Activity And Malondialdehyde(MDA) Levels In The Differentiation OfBenign-Malign Pleural Effusion

Introduction: Free radicals are highly reactive oxygen-containing molecular species that have been implicated in the pathogenesis of many diseases. There is a critical balance between free radical generation and antioxidant defenses. It has been suggested that oxidative stress may be associated with malignancy. Pleural effusions (PE) complicating bronchogenic malignancy is not uncommon but many diseases that cause PE are also present. The aim of our study was to assess the level of the malondialdehide (MDA) and antioxidant enzyme superoxide dismutase (SOD), in pleural fluids of malign and benign patients. Material and Methods: Forty-eight patients were enrolled into the study. Group I had 24 cases with malign pleural effusion and group II had 24 cases with benign pleural effusion. The MDA levels and SOD activities in pleural fluid were quantified. Results: There was a significant increase in MDA levels in group I (135,15 ± 18,95 nmol/ml) than in group II (67,35 ± 13,02 nmol/ml) (p<0,001). The activities of SOD is found to be increased significantly in group I when compared to group II (40,33 ± 7,1 U/ml vs 33,2 ± 6,2 U/ml) (p< 0,05). Discussion: These findings may support the previous findings showing that reactive oxygen species increased in malignant pleural fluid with increased activities of SOD. These parameters might be helpful in differation of malign from benign effusion and could be used as non-spesific diagnostic markers.

___

  • Portakal O, Özkaya Ö, İnal ME et al. Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clinical Biochemistry 2000; 33(4): 279-284.
  • Timothy RR, Sharma HM. Free radicals in health and disease. Indian J Clin Pract 1991; 2: 15-27.
  • Halliwell B. Reactive oxygen species in living systems: Source, biochemistry and role in human disease. Am J Med 1991; 91: 14-21.
  • Halliwell B, Gutterage JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1989; 186: 1-85.
  • Galleotti T, Masotti L, Borrello S. Oxy-radical metabolism and control of tumour growth. Xenobiotica 1991; 21: 1041-1451.
  • Yamaguchi S, Sakurada S, Nagumo M. Role of intracellular SOD in protecting human leukaemic and cancer cells against superoxide and radiation. Free Radical Biol Med 1994; 17: 389-395.
  • Gavino VC, Miller JS, Ikharebha SO et al. Effects of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J Lipid Res 1981; 22: 763-769.
  • Devi GS, Prasad MH, Saraswathi I et al. Free radicals antioxidant enzymes and lipid peroxidation indifferent types of leukemias. Clinica Chimica Acta 2000; 293: 53-62.
  • Yoshioka T, Kawada K, Shimoda T, Muri M. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated oxygen toxicity in the blood. Am J Obstet Gynecol 1979; 135: 372-376.
  • Yi-Sun, Larry W. Oberley R. Superoxide dismutase. Clin Chem 1988; 3413: 497-500.
  • Kakkar R, Mantha SV, Kalra S et al. Time course study of oxidative stress in aorta and heart of diabetic rat. Clinical Science 1996; 91: 441-448.
  • Jaruga P, Zastawny TH, Skoleowski S et al. Oxidation DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Letters 1994; 341:59-64.
  • O’Brien PJ. Antioxidants and cancer. Molecular mechanism. In: Armstrong D, Ed. Free radicals in diagnostic medicine. New York; Plenum Press, 1994: 215-239.
  • Floyd RA, Soung LM, Walker RN. Lipid hydroperoxide of N-hydroxyl-N-acetylaminofluorane via free radical route. Cancer Res 1976; 36: 2761-2766.
  • Cercitti PA. Proxidant states and tumor promotion. Science 1985; 227: 375-381.
  • Scott MD, Eaton JW, Frans A. Enhancement of erythrocyte superoxide dismutase activity. Effects on cellular oxidant defense. Blood 1989; 74: 2542-2549.
  • Diplock AT, Rice-Evans K, Burdan RH. Is there a significant role for lipid peroxidation in the aqusation of malignancy and for antioxidants. Cancer Prevent 1993; 54: 1952-1956.
  • Vanisree AJ, Syamaladevi CS. Status of lipid peroxidation and antioxidant enzymes in malignant (bronchogenic carcinoma) and non-malignant pleural effusions. Indian Journal of Cancer 1999; 36: 127-134.
  • Hammouda MA, Khalil MM, Salem A. Lipid peroxidation products in pleural fluid for seperation of transudates and exudates. Clinical Chemistry 1995; 41(9): 1314-1315.
  • Dormandy TL. Free-Radical oxidation and antioxidants. Lancet 1978; 1: 647-653.
  • Galleotti T, Masotti L, Borrello S. Oxy-radical metabolism and control of tumour growth Xenobiotica 1991; 21: 1041-1051.
  • Bhuvarahamurthy V, Balasubramaniant M, Govindasamy S. Effect of radiotherapy and chemoradiatherapy on circulating antioxidant system of human uterine cervical carcinoma. Molecular and Cellular Biochemistry 1996 158; 17-23
  • Guyton KZ, Kensler TW. Oxidative mechanism in carcinogenesis. Br Med Bull 1993; 49: 523-544.
  • Taniguchi N. Superoxide dismutase significances in aging, diabetes, ischemia and cancer. Rinshe Boyri 1990; 38: 376-381.
  • Comporti M. Biology of disease: lipid peroxidation and cellular damage in toxic liver injury. Lab Invest 1985; 53: 599-623.
  • Lizuka S. Human manganase-containing superoxide dismutase; immunoassay and contents in lung cancer. Hokkoido Igatu Zasshi 1984; 59: 739-749.
  • Durak İ, Canbolat O, Kavutçu M et al. Activities of total, cytoplasmic and mitochondrial superoxide dismutase enzymes in sera and pleural fluids from patients with lung cancer. Journal of Clinical Laboratory Analysis 1996; 10:17-20.