ADLİ BİLİMLERDE DNA ANALİZLERİ

DNA teknolojisi içinde bulunduğumuz yüzyılın en önemli bilimsel gelişmelerinden biri olarak her alanda günlük hayatımıza girmiştir. Özellikle tıp ve ziraat alanında yoğun olarak kullanılan bu teknoloji son yıllarda adli bilimler için de vazgeçilmez hale gelmiştir. Geçmişte bireyler arası farklılıkları gözönüne alınarak kimliklendirmede kullanılan kan grupları ve enzim analizlerinin yerini bugün polimorfizm açısından avantajları sebebi ile DNA polimorfizmleri almıştır. Günümüzde mahkemelerde de kabul gören ve adli alanda en güvenilir delillerden birisi kabul edilen DNA profillendirmesinin bugünkü aşamaya gelmesi elli yılı aşan araştırmaların sonucudur. Başlangıçta yüksek kalitede DNA örneğine ihtiyaç duyulan teknikler ile gerçekleştirildiğinden adli olaylar açısından kısıtlayıcı yönleri olan analizler PCR’ın keşfi ile büyük ölçüde DNA’nın kalitesinden bağımsız hale gelmiş ve iz miktarda elde edilen delillere bile uygulanabilir hale gelmiştir. Bu gelişme olay yerinden elde edilen biyolojik delillerin önemini arttırmıştır. Bugün olay ile ilgili deliller üzerinde bulunan tek bir sağlam hücreden elde edilen DNA molekülü bile değerlendirilebilmekte ve mahkemeye %99.999 olasılık ile sonuç verilebilmektedir

DNA technology, one of the most important scientific developments of this century, has entered our daily lives in all fields. Along with the intensive applications in medicine and agriculture, recently the technology has also become indispensable in forensic sciences. Formerly, taking into account that they differ between individuals, blood groups and enzymes were evaluated for personel identification. Nowadays, DNA polymorphism take place of this applications, in consideration of the advantages in polymorphism rates. After fifty years of scientific research, today DNA polymorphism is accepted by the court as one of the most reliable evidences in crime scene. Although in the beginning the analysis on DNA polymorphism requiring high quality of DNA had some technical limitations, the invention of PCR technology has overcome this problem and made it possible to evaluate trace amounts of sample. This development have increased the importance of the biological evidences on the crime scene. Today, DNA molecule derived from a single cell found in a crime scene can be evaluated and can give a % 99.999 accurate result for the court.

___

  • Eckert WG. Introduction to the forensic sciences. In “Introduction to Forensic Sciences” Ed. Eckert WG. CRC Press, New York, 1992, p. 1–10.
  • Horswell J, Fowler C. Associative evidence - the Locard exchange principle. In “The practice of Crime Scene Investigation” Ed. Horswell J. CRC Press, 2004, p:45–57.
  • Jeffreys AJ. Individual specific “fingerprints of Human DNA. Nature. 1985;316, 76–79.
  • Benecke M. DNA typing in forensic medicine and in criminal investigations: a current survey. Naturwissenschaften. 1997; 84, 181–188.
  • Duncan GT., Tracey ML. Serology and DNA Typing. In “Introduction to Forensic Sciences” Ed. Eckert WG. CRC Press. New York. 1992; p. 233–294.
  • Witkowski JA. Milestones in The Development of DNA Technology. In “Forensic DNA Technology” Ed. Farley MA and Harrington JJ. Lewis Publishers. 1991; p. 10–17.
  • Sensabaugh GF., Beroldingen CV. The Polymerase Chain Reaction: An Application to The Analysis of Biological Evidence. In “Forensic DNA Technology” Ed. Farley MA and Harrington JJ. Lewis Publishers. 1991; p. 66–78.
  • Başaran N. Tıbbi Genetik. Nobel ve Tıp yayınevi. 1999; p. 59–76.
  • Akar N. Klinik Moleküler Patoloji’ye Giriş. Antıp AŞ Yayınları. Ankara, 1999; s. 262
  • Kahn R. An Introduction to DNA Structure and Genome Organization. In “Forensic DNA Technology” Ed. Farley MA and Harrington JJ. Lewis Publishers. 1991; p. 25–38.
  • Özçelik T. DNA Polimorfizmi ve Tıbbi Önemi. Hacettepe Tıp Dergisi. 1996;27(1):72–76.
  • Özçelik T. Adli Amaçlı DNA Analizleri. Hacettepe Tıp Dergisi. 1996;27(2):50-52).
  • Tracey M. Short Tandem Repeat-Based Identification of Individuals and Parents. Croatian Medical Journal. 2001;42(3):233–238.
  • Gill P., Jeffreys AJ., Werrett DJ. Forensic Applications of DNA Fingerprints. Nature. 1985; 318, 577–579.
  • Bilge Y, Kedici PS, Alakoç YD, Ulküer KU, Ilkyaz YY. The identification of a dismembered human body: a multidisciplinary approach. Forensic Sci Int. 2003 Nov 26;137(2-3):141-6.
  • Prinz M, Carracedo A, Mayr WR, Morling N, Parsons TJ, Sajantila A, Scheithauer R, Schmitter H, Schneider PM. DNA Commission of the International Society for Forensic Genetics (ISFG): recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci Int Genet. 2007;1(1):3–12.
  • Gerstenberger J, Hummel S, Schultes T, Häck B, Herrmann B. Reconstruction of a historical genealogy by means of STR analysis and Y-haplotyping of ancient DNA. Eur J Hum Genet. 1999;7(4):469–77.
  • Finkeldey R, Leinemann L, Gailing O. Molecular genetic tools to infer the origin of forest plants and wood. Appl Microbiol Biotechnol. 2010;85(5):1251–8.
  • Lee HC., Ladd C. Preservation and Collection of Biological Evidence. Croatian Medical Journal. 2001; 42(3): 225–228.
  • Lee HC., Ladd C., Scherczinger CA., Bourke MT. Forensic Applications of DNA Typing. Part II: Collection and Preservation of DNA Evidence. The American Journal of Forensic Medicine and Pathology. 1998;19(1):10–18.
  • Alaeddini R, Walsh SJ, Abbas A. Forensic implications of genetic analyses from degraded DNA-a review. Forensic Sci Int Genet. 2010;4(3):148–57.
  • Jobling MA., Gill P. Encoded Evidence: DNA in Forensic Analysis. Nature Reviews. 2004; Volume 5.
  • Butler JM. Short tandem repeat typing technologies used in human identity testing. BioTechniques 2007; 43(4).
  • Prinz M, Boll K, Baum H, Shaler B. Multiplexing of Y chromosome specific STRs and performance for mixed samples. Forensic Sci Int. 1997;14;85(3):209–18.
  • Alakoc YD, Gokcumen O, Tug A, Gultekin T, Gulec E, Schurr TG. Y-chromosome and autosomal STR diversity in four proximate settlements in Central Anatolia. Forensic Sci Int Genet. 2010 (basım aşamasında).
  • de Knijff P, Kayser M, Caglià A, Corach D, Fretwell N, Gehrig C, Graziosi G, Heidorn F, Herrmann S, Herzog B, Hidding M, Honda K, Jobling M, Krawczak M, Leim K, Meuser S, Meyer E, Oesterreich W, Pandya A, Parson W, Penacino G, Perez-Lezaun A, Piccinini A, Prinz M, Roewer L, et al. Chromosome Y microsatellites: population genetic and evolutionary aspects. Int J Legal Med. 1997;110(3):134–49.
  • Son JY, Lee YS, Choung CM, Lee SD.Polymorphism of nine X chromosomal STR loci in Koreans. Int J Legal Med. 2002;116(6):317-21
  • Hering S, Kuhlisch E, Szibor R. Development of the X-linked tetrameric microsatellite marker HumDXS6789 for forensic purposes. Forensic Sci Int. 2001;119(1):42–6.
  • Budowle B., Wilson MR., DiZinno JA.,Stauffer C., Fasano MA., Holland MM., Monson KL. Mitochondial DNA regions HVI and HV II population data. For Sci Int 1999; 12: 23–35.
  • Baasner A., Schafer C., Junge A., Madea B., Polymorphic sites in human mtDNA control region sequences. population data and maternal inheritance. Forensic Sci Int 1998;98(3): 169–78.
  • Rousselet F., Mangin P. Mitochondrial DNA Polymorphisms: a study of 50 French Caucasian individuals and application to forensic casework. Int. J.Legal Med. 1998; 111:292–298.
  • Holland MM, Fisher DL, Mitchell LG, Rodriquez C, canik Jj, Merril Cr, Weedn VW. Mitochondrial DNA sequence analysis of human skeletal remains from the Vietnam war. J Forensic Sci. 1993;38: 542–553.
  • Lutz S., Weisser HJ., Heizmann J., Pollak S., MtDNA as a tool for identification of human remains Int.J.Legal Med. 1996;109:205–209.
  • Wilson,MR., DiZinno, JA., Polanskey, D., Replogle, j., Budowle,B. Validation of mitochondrial DNA sequencing for forensic casework analysis. Int J Legal Med. 1995; 108(2): 68–74.
  • National Institute of Justice. Predictions of the Research and DevelopmentWorking Group. The Future of Forensic DNA testing. U.S. Department of Justice Office of Justice Programs.2000; p 26–28.