HİDROKSİKLOROKİNİN NEDEN OLDUĞU RETİNAL TOKSİSİTE
AMAÇ: Hidroksiklorokin kullanan romatoid artritli hastalarda retinal toksisitenin belirlenmesinde, görme alanı,fundus fotoğraf, retina sinir lifi kalınlığı (RNFL), fundus otofloresans(FAF), multifokal elektroretinogram(mfERG) sonuçlarının karşılaştırılması amaçlandı.GEREÇ VE YÖNTEMLER: Şubat ile Haziran 2015 tarihleri arasında Ankara Eğitim ve Araştırma hastanesi göz polikliğine başvuran hidroksiklorokin kullanan 23 romatoid artritli hasta incelendi. Tüm hastaların düzeltilmiş görme keskinlikleri, biomikroskobik muayeneleri ve fundus muayeneleri yapıldı.Daha sonra, hastalara fundus fotografı, Humphrey görme alanı testi, optik koherens tomografi (OCT), FAF, mfERG yapıldı. BULGULAR: Çalışmaya yaşları ortalama 57,9 ± 9,9 yıl (35-75 yıl) olan 23 romatoid artritli hastanın 46 gözü alındı. Bunların 17 'si kadın, 6'sı erkek idi. Tüm hastalar hidroksiklorokini güvenilir dozu olan 6,5 mg/kg/gün şeklinde almaktaydı. Hastalar ortalama 7,6 ± 6,04 ay (4-42ay) hidroksiklorokin kullanmaktaydı. Hiçbir hastada fundus muayenesinde ve görme alanında patoloji saptanmadı. 46 gözün 8'inde (%17) RNFL'de incelme saptandı. 46 gözün 4'unde (%8,69) FAF sonuçlarında patoloji görüldü. 46 gözün 10 'unda (%22) mfERG 'de anormallik saptandı.SONUÇ: RNFL, FAF, mfERG; hidroksiklorokinin neden olduğu retinal toksisitenin belirlenmesinde son derece önemli olup, erken dönemdeki retinal değişikliklerin saptanmasında diğer testler oranla daha sensitiftirler. Retinal değişikleri erken belirlemek için,ilaç kullanımı süresince her 3 ayda bir bu testlerin yapılması önerilebilir.
RETINAL TOXICITY BECAUSE OF HYDROXYCHLOROQUINE
OBJECTIVE: ATo compare visual field testing, fundus imaging, retinal nerve fiber layer thickness (RNFL), fundusautofluorescence (FAF) and multifocal electroretinography (mfERG) results in the detection of retinal toxicity of hydroxychloroquineuse in patients with rheumatoid arthritis.MATERIAL AND METHODS: Twenty three patients who were using hydroxychloroquine due to rheumatoid arthritisadmitted to ophthalmology clinic of Ankara Training and Research Hospital as outpatients from February to June2015 were enrolled in the study. In all patients, best-corrected visual acuity assessment, biomicroscopic examination,fundus examination, fundus photography, Humprey visual field testing, optic coherence tomography (OCT), FAF andmfERG were performed.RESULTS: Mean age was 57,9 ± 9,9 years (range, 35-75). Forty six eyes of 23 patients were assessed. Seventy patientswere female and 6 were male. All patients were receiving the safe dose of hydroxichloroquine of 6.5 mg/kg/day. Meantime of hydroxychloroquine use was 7,6 ± 6,04 months (range, 4-42 mo). No pathology was encountered in fundusexamination and visual field testing in any of the patients. In 8 eyes (17%) thinning in RNFL was detected. Pathologyin FAF was observed in 4 eyes (8.69%). Abnormality in mfERG was observed in 10 eyes (22%).DISCUSSION: RNFL, FAF, mfERG analysis is quite important in the detection of retinal toxicity secondary to hydroxychloroquine.They are also more sensitive in the detection of early retinal changes than other tests. For earlydetection of retinal changes, these tests can be performed regularly at every 3 months.
___
- 1)Payne JF, Hubbard GB, Aaberg TM, Yan J. Clinical characteristics of hydroxychloroquine retinopathy. British Journal of Ophthalmology. 2011; 95: 245-50.
- 2)Lai TY, Chan W-M, Li H, Lai RY, Lam DS. Multifocal electroretinographic changes in patients receiving hydroxychloroquine therapy. American journal of ophthalmology. 2005; 140: 794-807.
- 3)Kellner S, Weinitz S, Kellner U. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. British Journal of Ophthalmology. 2009; 93: 1444-47.
- 4)Kellner U, Renner AB, Tillack H. Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine. Investigative ophthalmology & visual science. 2006; 47: 3531-38.
- 5)Marmor MF, Kellner U, Lai TY, Lyons JS, Mieler WF. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology. 2011; 118: 415-22.
- 6)Rynes RI. Antimalarial drugs in the treatment of rheumatological diseases. British journal of rheumatology. 1997; 36: 799-805.
- 7)Tehrani R, Ostrowski RA, Hariman R, Jay WM. Ocular toxicity of hydroxychloroquine. Seminars in ophthalmology. 2008; 23: 201-9.
- 8)Rodriguez-Padilla JA, Hedges TR, Monson B, et al. Highspeed ultra-high-resolution optical coherence tomography findings in hydroxychloroquine retinopathy. Archives of ophthalmology. 2007; 125: 775-80.
- 9)Lai TY, Ngai JW, Chan WM, Lam DS. Visual field and multifocal electroretinography and their correlations in patients on hydroxychloroquine therapy. Documenta ophthalmologica. Advances in ophthalmology. 2006; 112: 177-87.
- 10)Maturi RK, Yu M, Weleber RG. Multifocal Electroretinographic Evaluation of Long-term HydroxychloroquineUsers. Archives of ophthalmology. 2004; 122: 973-81.
- 11)Lyons JS, Severns ML. Detection of early hydroxychloroquine retinal toxicity enhanced by ring ratio analysis of multifocal electroretinography. American journal of ophthalmology. 2007; 143: 801-09.
- 12)Lyons JS, Severns ML. Using multifocal ERG ring ratios to detect and follow Plaquenil retinal toxicity: a review. Documenta ophthalmologica. 2009; 118: 29-36.
- 13) Bernstein HN. Ophthalmologic considerations and testing in patients receiving long-term antimalarial therapy. The American journal of medicine. 1983; 75: 25-34.
- 14)Mavrikakis I, Sfikakis PP, Mavrikakis E, et al. The incidence of irreversible retinal toxicity in patients treated with hydroxychloroquine: a reappraisal. Ophthalmology. 2003;110: 1321-26.
- 15) Wolfe F, Marmor MF. Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis care & research. 2010; 62: 775-84.
- 16) Easterbrook M. Monitoring patients on antimalarials: where are we now? Canadian journal of ophthalmology. Journal canadien d'ophtalmologie. 2012; 47: 465-70.
- 17) Rosenthal AR, Kolb H, Bergsma D, Huxsoll D, Hopkins JL. Chloroquine retinopathy in the rhesus monkey. Invest Ophthalmol Vis Sci. 1978; 17: 1158-75.
- 18) Raines M, Bhargava S, Rosen E. The blood-retinal barrier in chloroquine retinopathy. Investigative ophthalmology & visual science. 1989; 30: 1726-31.
- 19) Hart WM, Jr., Burde RM, Johnston GP, Drews RC. Static perimetry in chloroquine retinopathy. Perifoveal patterns of visual field depression. Archives of ophthalmology (Chicago, Ill. : 1960). 1984; 102: 377-80.
- 20) Marmor MF. Comparison of screening procedures in hydroxychloroquine toxicity. Archives of ophthalmology. 2012; 130: 461-69.
- 21) Kellner S, Weinitz S, Kellner U. Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. The British journal of ophthalmology. 2009; 93: 1444-7.
- 22) Hood DC, Bach M, Brigell M, et al. ISCEV standard for clinical multifocal electroretinography (mfERG)(2011 edition). Documenta Ophthalmologica. 2012; 124: 1-13.
- 23) Stepien KE, Han DP, Schell J, Godara P, Rha J, Carroll J. Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss. Transactions of the American Ophthalmological Society. 2009; 107: 28.
- 24) Chang WH, Katz BJ, Warner JE, Vitale AT, Creel D, Digre KB. A novel method for screening the multifocal electroretonogram in patients using hydroxychloroquine. Retina. 2008; 28: 1478-86.