Yapay Zekâ ile Entegre Ultrasonografi Cihazı Kullanımının Periferik Sinir Bloğu Uygulamalarında Enjeksiyon Alanını Görüntülemeye Olan Etkisi
Amaç: Yeni cihazlar ve yazılımlar, klinisyenlerin yükünü hafiflet- mek, zaman kayıplarını önlemek ve mesleki memnuniyetlerini ar- tırmak gibi faydaları beraberinde getirmiştir. Bu çalışmada perife- rik sinir bloğu uygulamalarında yapay zekâ entegre ultrasonografi (USG) kullanımının enjeksiyon bölgesinin görüntülenmesine etki- sini ve klinisyenlerin bakış açısını sunmayı amaçladık. Yöntem: Çalışmada yerel etik komite onayı sonrası T.C Sağlık Bilim- leri Üniversitesi Dışkapı Yıldırım Beyazıt Eğitim ve Araştırma Hasta- nesi bünyesinde çalışan gönüllü 40 Anesteziyoloji ve Reanimasyon doktoruna öncelikle konvansiyonel USG eşliğinde ve yapay zekâ entegre (Nerveblox) USG eşliğinde seçilmiş rejyonal blokları (inf- raklavikular ve pektoral/serratus plan bloğu-PECS) deneyimlemesi sağlanarak blok alanı görüntüleme süreleri kaydedildi. Sonra bu deneyimlerinden yola çıkılarak 14 maddeden oluşan basılı anket formları yöneltildi. Anestezi hekimlerinin belirlenmiş blok alan- larını görüntüleme sürelerine göre karşılaştırılmasında bağımsız örneklemler için t testi kullanılmış olup istatistiksel anlamlılık se- viyesi p
The Effect of Using Ultrasonography Device Integrated with Artificial Intelligence on Imaging the Injection Area in Peripheral Nerve Block Applications
Objective: New devices and software have brought about benefits such as easing the burden of clinicians, preventing time losses and increasing their professional satisfaction. In this study, we aimed to present the effect of the use of artificial intelligence integra- ted ultrasonography (USG) on the imaging of the injection site in peripheral nerve block applications and the point of view of the clinicians. Methods: In the study, following ethics committee’s approval, 40 volunteer Anesthesiology and Reanimation doctors working in Health Sciences University Dışkapı Yıldırım Beyazıt Education and Training Hospital performed selected regional blocks (infraclavicu- lar and PECS) accompanied by conventional USG and artificial in- telligence integrated-USG (Nerveblox), and the block area imaging times were recorded. Subsequently, questionnaires about these experiences were distributed and 14 closed-ended questions were asked. In the comparison made according to the physicians’ imaging times of the determined block areas, the t test for inde- pendent samples was used, and the statistical significance level was established as p
___
- 1. Gadsden JC. The role of peripheral nerve stimulation in the era of ultrasound-guided regional anaesthesia. Anaesthesia 2021;76(S1):65-73.
- 2. Denny N, Harrop-Griffiths W. Location, location, location! Ultrasound imaging in regional anaesthesia. Br J Anaesth 2005;94(1):1-3.
- 3. Juanes JA, Alonso P, Hernández F, Ruisoto P, Muriel C. Anatomical-ultrasound visor for regional anaesthesia J Med Syst 2016;40(7):158.
- 4. Sites BD, Chan VW, Neal JM, et al. The American Society of Regional Anesthesia and Pain Medicine and the European Society of Regional Anaesthesia and Pain Therapy joint committee recommendations for education and training in ultrasound-guided regional anesthesia. Reg Anesth Pain Med 2009;34(1):40-6.
- 5. Bowness J, Laurent DBS. AI real-time color overlay of sonoanatomy. J Anesth 2021;35(4):602.
- 6. Akkus Z, Cai J, Boonrod A, et al. A survey of deep-learning applications in ultrasound: Artificial intelligence–powered ultrasound for improving clinical workflow. J Am Coll Radiol 2019;16(9):1318-28.
- 7. Bowness J, Varsou O, Turbitt L, Burkett-St Laurent D. Identif- ying anatomical structures on ultrasound: Assistive artificial intelligence in ultrasound-guided regional anesthesia. Clin Anat 2021;34(5):802-9.
- 8. Gungor I, Gunaydin B, Oktar SO, et al. A real-time anatomy ıdentification via tool based on artificial ıntelligence for ultrasound-guided peripheral nerve block procedures: An accuracy study. J Anesth 2021;35(4):591-4.
- 9. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism 2017;69S:S36-S40.
- 10. Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol 2019;28(2):73- 81.
- 11. Ahmed Z, Mohamed K, Zeeshan S, Dong XQ. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford) 2020;2020:baaa010.
- 12. Shin YR, Yang J, Lee YH, Kim S. Artificial intelligence in musculoskeletal ultrasound imaging. Ultrasonography 2021;40(1):30-44.
- 13. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436-44.
- 14. Sullivan GM, Artino AR Jr. Analyzing and interpreting data from likert-type scales. J Grad Med Educ 2013;5(4):541-2.
- 15. Kåsine T, Romundstad L, Rosseland LA, et al. Needle tip tracking for ultrasound-guided peripheral nerve block procedures-An observer blinded, randomised, controlled, crossover study on a phantom model. Acta Anaesthesiol Scand 2019;63(8):1055-62.
- 16. Farber SJ, Saheb-Al-Zamani M, Zieske L, et al. Peripheral nerve injury after local anesthetic injection. Anesth Analg 2013;117(3):731-9.
- 17. Liu SS, YaDeau JT, Shaw PM, Wilfred S, Shetty T, Gordon M. Incidence of unintentional intraneural injection and postoperative neurological complications with ultrasound- guided interscalene and supraclavicular nerve blocks. Anaesthesia 2011;66(3):168-74.
- 18. Jeng CL, Torrillo TM, Rosenblatt MA. Complications of peripheral nerve blocks. Br J Anaesth 2010;105 Suppl 1:i97- 107.
- 19. Neuburger M, Landes H, Kaiser H. Pneumothorax bei der vertikalen infraklavikularen blockade des plexus brachialis: Fallbericht einer seltenen komplikation. Anaesthesist 2000;49(10):901-4.
- 20. Sandhu NS, Manne JS, Medabalmi PK, Capan LM. Sonographically Guided Infraclavicular Brachial Plexus Block in Adults. J Ultrasound Med 2006;25(12):1555-61.
- 21. Orebaugh SL, Williams BA, Kentor ML. Ultrasound guidance with nerve stimulation reduces the time necessary for resident peripheral nerve blockade. Reg Anesth Pain Med 2007;32(5):448-54.
- 22. Carovac A, Smajlovic F, Junuzovic D. Application of ultrasound in medicine. Acta Inform Med 2011;19(3):168-71.
- 23. Fuzier R, Lammens S, Becuwe L, et al. The use of ultrasound in France: A point of view from experienced regional anesthesiologists. Acta Anaesthesiol Belg 2016;67(1):9-15.
- 24. Griffin J, Nicholls B. Ultrasound in regional anaesthesia. Anaesthesia 2010;65 Suppl 1:1-12.
- 25. Paranjape K, Schinkel M, Panday RN, Car J, Nanayakkara P. Introducing artificial intelligence training in medical education. JMIR Med Educ 2019;5(2):e16048.
- 26. Wartman SA, Combs CD. Medical education must move from the information age to the age of artificial intelligence. Acad Med 2018;93(8):1107-9.