Lamiaceae ve Poaceae familyalarına ait bazı türlerin antiksidan savunma kapasitelerinin karşılaştırmalı olarak incelenmesi

Bitkilerin antioksidan bileşikleri aroma, renk, koku ve koruyucu özellikleri nedeniyle tıbbi ve endüstriyel kullanım amacıyla yoğun olarak araştırılmaktadır. Bu çalışmada, Lamiaceae’den 16 tür ve Poaceae’den 14 tür, Kuzeydoğu Akdeniz bölgesinden toplandı ve analiz edildi. Bitki örneklerinin kuru ağırlık ve su durumları belirlendi. Bu iki familyanın üyeleri arasında klorofil ve karoten değerleri bakımından önemli bir fark olmadığı belirlendi. Lamiaceae türlerinde ortalama ksantofil içeriği (236 µg g-1 FW) Poacea türlerinden (142 µg g-1 FW ) ve total antioksidatif kapasite Lamiacea türlerinde (5.19 mg g-1 FW) Poaceae türlerinden (3.49 mg g-1 FW) daha yüksek bulundu. Buna karşın toplam çözünür fenolikler Poaceae türlerinde ortalama 1.83 mg g-1 FW, Lamiaceae türlerinde 1.67 mg g-1 FW olarak ölçüldü.  Süperoksit dismutaz enzim aktivitesi Poaceae türlerinde daha yüksek bulundu. Bulgular iki familya arasında önemli farklılıklar bulunabileceğini ve biyokimyasal kaynakların belirlenmesi bakımından karşılaştırmalı çalışmaların çoğaltılması gerektiğini ortaya koymaktadır.

The comparative investigation of the antioxidant activities of some species belonging to the Lamiaceae and Poaceae families

The antioxidant compounds ofplants have widely been investigated  for the purpose of medical and industrial uses due to their aroma,color, smell and protective properties. In the study, 16 species from Lamiaceaeand 14 species from Poaceae were collected from the Northeastern Mediterraneanregion and then they were analysed. The dry weight and water conditions of theplant samples were identified. It was identified that there wasn’t asignificant difference between these two families in respect to their values ofchlorophyll and carotene.  The meanxanthophyll content was higher in the Lamiaceae species (236 μg g-1 FW)than in the Poacea species (142 μg g-1 FW) and total antioxidativecapacity was higher in Lamiacea species (5.19 mg g-1 FW) thanPoaceae species (3.49 mg g-1 FW). On the other hand, mean solublephenolics were measured as 1.83 mg g-1 FW in Poaceae species and1.67 mg g-1 FW in Lamiaceae species. Superoxide dismutase enzymeactivity was higher in Poaceae species. The findings revealed that significantdifferences could exist among the families and further comparative studiesshould be performed for the determination of the biochemical resources.

___

  • Ajaib M, Khan KM, Perveen S, Shah S. (2013). Antimicrobial and antioxidant activities of Echinochloa colona (Linn.) link and Sporobolus coromandelianus (Retz.) Kunth. J. Chem. Soc. Pakistan 35: 960- 965.
  • Albayrak S, Aksoy A, Hamzaoğlu E (2008). Determination of antimicrobial and antioxidant activities of Turkish endemic Salvia halophila Hedge. Turk J. Biol 32: 265-270.
  • Alscher RG, Hess JL (1993). Antioxidants in higher plants. Boca Raton: CRC Pres, pp 1-20.
  • Başer KHC (1993). Essential oils of Anatolian Labiateae: A profile. Acta Horticulturae 333: 217-237.
  • Beyer WF, Fridovich I (1987). Assaying for superoxide dismutase activity some large consequences of minör changes in conditions. Anal. Biochem 161: 559-566.
  • Bowler C, van Montagu M, Inze D (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol 43: 83-116.
  • Cai Y, Luo Q, Sun M, Corke H (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74: 2157-2184.
  • Castrillo M, Vizcaino D, Moreno E, Latorraca Z (2001). Chlorophyll content in some cultivated and wild species of the family Lamiaceae” Biologia Plantarum 44: 423-425.
  • De Marino S, Festa C, Zollo F, Incollingo F, Raimo G, Evangelista G, Iorizzi M (2012). Antioxidant activity of phenolic and phenylethanoid glycosides from Teucrium polium L. Food Chem 133: 21-28.
  • Ebrahimzadeh MA, Pormorad F, Hafezi S (2008). Antioxidatif activities of Iranian corn silk. Turk J. Biol 32: 43-49.
  • El-Qudah JM (2014). Contents of Chlorophyll and Carotenoid pigments in common Thyme (Thymus vulgaris L.). World App. Sci. J 29: 1277-1281.
  • Erdemoğlu N, Turan NN, Çakıcı I, Şener B, Aydın A (2006). Antioxidant activities of some Lamiaceae plant extracts. Phytotherapy Res 20: 9-13.
  • Erdoğan I, Baki E, Senol S, Yılmaz G (2010). Sage-called plant spieces sold in Turkey and their antioksidant activities. J. Serb. Chem. Soc 75: 1491-1501.
  • Ferraris L, Abbatista-Gentile I, Matta A (1987). Variations of phenols concentrations as a concequence of stressses that induce resistence to Fusarium wild of tomato. J. Plant Dis. Protec 94: 624-629.
  • Güner A, Özhatay N, Ekim T, Başer KHC (2000). Flora of Turkey and the East Aegean Islands (supplement 2), Edinburgh University Pres, Edinburgh.
  • Kahraman A, Celep F, Doğan M (2009). Morphology, anatomy and palynology of Salvia indica L. (Labiatae). World Appl. Sci. J 6: 289-296.
  • Keles Y, Öncel I. (2000). Changes of superoxide dismutase activity in wheat seedlings exposed to naturel environmetal stresses. Commun. Fac. Sci. Univ. Ank. Series C 18: 1-8.
  • Keleş Y, Everest A (2008). Relation to altitude adaptation and antioxidant defence system in five shrubs and trees species from Middle Taurus mountains. Int. J. Natural Engineer. Sci. 2: 45-49.
  • Knezevic SV, Blazekoviç B, Stefan BM, Alegro A, Köszegi T, Petrik J (2011). Antioksidant activities and polyphenolic contents of three selected Micromeria species from Croatia. Molecules 16: 1454-1470.
  • Lu Y, Foo Y (2002). Polyphenolics of Salvia a reviewe. Phytochemistry 59: 117-140.
  • Markovskaya E, Schmakova N, Sergienko L (2012). Ecophysiological characteristic of the costal plants in the conditions of the tidal zone on the costs of Svalbard. Czech Polar Reports 2: 103-108.
  • Matkowski A, Zieliska S, Oszmianski J, Zarawska EL (2008). Antioksidant activity of extracts from leaves and roots of Salvia mitiorrhiza Bunge, Salvia przewalskii Maxim, Salvia verticillata L. Bioresource Technol 99: 7892-7896.
  • Mitler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405–410.
  • Moore TC (1974). Research Experiences in Plant Physiology. Springer, New York.
  • Öncel I, Yurdakulol E, Keleş Y, Kurt L, Yıldız A (2004). Role of antioxidant defense system and biochemical adaptation on stres tolerance of high mountain and stepe plants. Acta Oecol 26: 211-218.
  • Porra RJ, Thompson RA, Kriedemann PE (1989). Determination of accurate extinction coefficients and simulations equations for assaying chloropylls a and b extracted with four different solvent verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 975: 384-394.
  • Prieto P, Pineda M, Aguilar M (1999). Spectrophotometric Quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the Determination of vitamin E. Anal. Biochem 269: 337-341.
  • Reddy SS, Krishnan C (2013). Characterization of enzyme released antioxidant phenolic acids and xylooligosaccharides from different Graminae or Poaceae members. Food Biothec 27: 357-370.
  • Rice-Evans AC, Miller NJ, Papanga G (1996). Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radical Biol. Med 20: 933–956.
  • Schoner S, Krause GH (1990). Protective systems against active oxygen species in spinach - response to cold-acclimation in excess light. Planta 180: 383-389.
  • Swedan EA (2013). PAL gene activity and total phenolic compounds in some members of Lamiaceae. J. Appl. Sci. Res 9: 1222-1227.
  • Triantaphyllou K, Blekas G, Boskou D (2001). Antioxidatif properties water extrcts obtained from herbs of the species Lamiaceae. Int. J. Food Sci. Nutrition. 52: 313-317.
  • Udin MdK, Juraimi AS, Ismail MR, Hossain MdA, Othman R, Rahim AA (2012). Physiological and growth responses of six turfgrass species relative to salinity tolerance. Scientific World J 2012: 1-10.
  • Wojdylo A, Oszmianski J, Czemerys R (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105: 940-949.
  • Van Breusegem F, Dat JF (2006). Reactive oxygen species in plant cell death. Plant Physiol 141: 384-390.