Icacina trichantha Oliver’in (Icacinaceae) morfo-anatomik ve fitokimyasal değerlendirmesi

Önemli bir tıbbi tropik bitki olan Icacina trichantha’nın yaprak epidermisi ışık mikroskobu yardımıyla, yaprağının ve kökünün kimyasal bileşenleri de Gaz Kromatografisi-Kütle Spektrometresi (GC-MS) kullanılarak incelenmiştir. Halihazırda bitkinin yaprak epidermis verileri eksik durumdadır ve bitkinin yaprağı ve kökünün kimyasal analizi tek bir çalışmada ilk kez yapılmıştır. Parasitik ve diasitik stoma tipleri, düzensiz epidermal hücre şekli ve köşeli veya kavisli antiklinal duvar desenleri türün tanımlanmasında kullanılabilen yaprak epidermis karakterleri arasında yer alır. Bununla birlikte, nicel veriler, hem ölçülen hem de sayılan özelliklerin değer aralığını sağlayacak şekilde örtüşür nitelikte görümektedir. Kökün N-heksan ekstresi indirgeyici şekerler, tanenler, steroidler, glikozitler, terpenoidler ve flavonoidler bakımından zengindir; GC-MS analizi de yaprak ve yumrulu kökte, en yaygını dodekanoik asit (%47.85 - %54.10) olan, sırasıyla 11 ve 3 önemli esterlenmiş biyoaktif bileşen ortaya çıkarmıştır. Buna karşın bazı kimyasalların belirli bölgelerle sınırlı (kökte trichothec-9-en-8-one, %47.73, yaprakta 9-oktadekenoik asit, %25.05) kaldığı görülmüştür. Çalışma bulguları, bitki bir bütün halinde olmasa bile bitkinin teşhisine katkı sağlayacaktır ve bitkinin drog olarak taranmasında da yardımcı olacaktır.

Morpho-anatomical and phytochemical evaluation of Icacina trichantha Oliver (Icacinaceae)

The leaf epidermis of Icacina trichantha, a quintessential medicinal tropical plant was investigated with the aid of light microscopy and the chemical constituents of its leaf and root were investigated using Gas Chromatography-Mass Spectrometry (GC-MS). Hitherto, leaf epidermis data is missing and similarly, the chemical analysis of the leaf and root of the plant is undertaken in a single study for the first time. The leaf epidermis characters with which the species can be defined include paracytic and diacytic stomatal types, irregular epidermal cell shape together with angular or curved anticlinal wall patterns. However, the quantitative data appeared to overlap thus providing the range of values of both the measured and counted features. N-hexane extract of the root is rich in reducing sugars, tannins, steroids, glycosides, terpenoids and flavonoids while GC-MS analysis revealed 11 and 3 significant esterified bioactive components in the leaf and tuberous root respectively with dodecanoic acid being most abundantly present (47.85%-54.10 %) but some chemical confined to specific areas are trichothec-9-en-8-one (47.73 %) in the root and 9-octadecenoic acid (25.05 %) in the leaf. The result of this study will assist in identifying the plant even if its parts are fragmentary and also be helpful in screening the plant for drug.

___

  • Agyakwa CW, Akobundu OI (1998). A handbook of West African weeds 2nd ed. Nigeria: International Institute for Tropical Agriculture.
  • Ajayi GO, Kadiri AB, Egbedi ME and Oyeyemi OO (2011). Pharmacognostic study of two medicinal species of Rytigynia (Rubiaceae) from Nigeria. Phytologia Balcanica 17(3): 355-359.
  • Alawode TT, Lajide L, Owolabi BJ, Olaleye MT (2018). Investigation into the antioxidant and in vitro anti-inflammatory use of the leaves and tuber extracts of Icacina trichantha. Journal of Chemical Society of Nigeria 43(4): 699-706.
  • Asuzu IU, Aforonwa CU (2008). The pharmacological effects of Icacina trichantha leaf methanol extract. Journal of Herbs, Spices and Medicinal Plants 6(1): 1998-2006.
  • Asuzu IU, Abubakar II (1995a). The effects of Icacina trichantha tuber extract on the nervous system. Phytotherapy Research 9: 21-25.
  • Asuzu IU, Abubakar II (1995b). The antihepatotoxic and antinephrotoxic activities of lcacina trichantha tuber extract. Journal of Herbs Spices and Medicinal Plants 3: 9-20.
  • Burkhill HM (1985). The Useful Plants of West Tropical Africa. 2nd ed. Kew, UK: Royal Botanic Gardens.
  • Che CT, Zhao M, Guo B, Onakpa MM (2016). Icacina trichantha, A tropical medicinal plant. Nat Prod Commun. 11(7): 1039- 1042.
  • Dalziel JM, (1937). The useful plants of west tropical Africa. London: Crown Overseas Agents for the Colonies.
  • Davis PH, Heywood VH (1963). Principles of angiosperm taxonomy. Edinburgh: Oliver & Boyd. Ltd.
  • Harborne JB (1991). Phytochemical Methods. London: Chapman and Hall.
  • Hassler M (2020). World Plants: World Plants: Synonymic checklists of the vascular plants of the world. In Species 2000 & ITIS Catalogue of Life, 2020-02-24.
  • Holmgren P, Holmgren N (2003). Index Herbariorum http://www.nybg.org/bsci/ih/ih.html / [accessed 15 June 2020].
  • Hutchinson J, Dalziel JM (1958). Flora of west tropical Africa. London: Crown Agents of Overseas Governments and Administrations.
  • Jagtap NS, Khadabadi SS, Ghorpade DS, Banarase NB, Naphade SS (2009). Antimicrobial and antifungal activity of Centella asiatica (L.) Urban (Umbeliferae. Research Journal of Pharmaceutical Technology 2: 328-30.
  • Kadiri AB (2003). Foliar epidermal morphology of the medicinal genus Momordica Linn, (Cucurbitaceae) in Nigeria. Nigerian Journal of Science 37(1): 25-33.
  • Kadiri AB, Olowokudejo JD (2016): Systematic significance of foliar epidermis and tendril morphology in three West African genera of Cucurbitaceae: Momordica L., Luffa Mill. and Trichosanthes L. Webbia-Journal of Plant Taxonomy and Geography 71(1): 91-105.
  • Kumar S, Pandey AK (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal 162750: 1-17.
  • Lalitha Rani S, Mohan VR, Regini GS, Kalidass C (2009). GC-MS analysis of ethanolic extract of Pothos scandens leaf. Journal of Herbal Medicine Toxicology 3: 159-160.
  • Ogundipe OT, Akinrinlade OO (1998). Epidermal micromorphology of some species of Albizia Durazz (Mimosaceae). Phytomorphology 48: 27-323.
  • Okuda T, Ito H (2011). Tannins of constant structure in medicinal and food plants hydrolyzable tannins and polyphenols related to tannins. Molecules 16(3): 2191-2217.
  • Olajide OA, Aderogba MA, Adedapo ADA, Makinde JM (2004). Effects of Anacardium occidentale stem bark extract on in vivo inflammatory models. Journal of Ethnopharmacology 95: 139-142.
  • Onakpa MM, Asuzu IU (2013). Histological changes and antidiabetic activities of Icacina trichantha tuber extract in beta-cells of alloxan induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine 3(8): 628-633.
  • Onakpa MM, Ming Z, Tanja G, Wei-Lun C, Chun-Tao C, Santarsiero BD, Swanson S, Asuzu IU (2014). Cytotoxic (9βH)-Pimarane and (9βH)-17-Norpimarane Diterpenes from the tuber of Icacina trichantha. Chemistry and Biodiversity 11: 1914-1922.
  • Otun KO, Onikosi DB, Ajiboye AA, Jimoh AA (2015). Chemical composition, antioxidant and antimicrobial potentials of Icacina trichantha Oliv. leaf extracts. Natural Product Chemical Research 10: 21-29.
  • Sofowora A (1993). Medicinal plants and traditional medicine in Africa. Nigeria: Spectrum Books Limited.
  • Stace CA (1965). The significance of leaf epidermis in the taxonomy of the Combretaceae; a general review of tribal, generic and specific characters . Botanical Journal of The Linnean Society 59: 229-252.
  • Trease GE, Evans WC (1998): A textbook of pharmacognosy. UK: W. B. Saunders Company Limited.
  • Vohra A, Kaur H (2011). Chemical investigation of medicinal plant Ajuga bracteosa. Journal of Natural Product Plant Resources 1(1): 37-45.