SİSTEMLİ YAKLAŞIMLA EKOSİSTEMİ A ALİZİ DE MATEMATİKSEL

Bilgi sistemlerinin gelişmesi ve bunların ekosistem araştırmalarına yansımaları, ekosistemlerde ortaya çıkan süreçlerin detaylı incelenmesinde matematiksel modellerin kullanılmasını daha da gerekli kılmaktadır. Ekosistemdeki süreçlerin biyolojik-kimyasal-fiziksel, matematiksel, mantıksal temsili modellerinin yapılması deneysel ve teorik bilgilere bağlı olmaktadır. Sistemli yaklaşım model oluşturmanın metodolojik temelini oluşturduğundan, bu yaklaşımın temel kavramlarının (model bileşenleri, bileşenleri etkileyen dış ortam) belirlenmesi öncelikli problemlerdendir. Bu amaçla, “ekosistem”, “model’’, ve “modelleme” kavramları sistemli bir yaklaşım ile ele alınarak, modellerin genel sınıflandırılması, modelleme yöntemindeki gerekli aşamalar (konunun belirlenmesi, kavramlaştırma, özelleştirme, gözlem, tespit, kontrol, inceleme ve optimizasyon) incelenmiş ve genel olarak tarım sistemlerinde uygulanabilir önemli bazı matematiksel modeller (temel kütle taşınım modelleri, verimlilik ve bitki büyüme modelleri) irdelenmiştir

SİSTEMLİ YAKLAŞIMLA EKOSİSTEMİN ANALİZİNDE MATEMATİKSEL MODELLEME YÖNTEMİ

Bilgi sistemlerinin gelişmesi ve bunların ekosistem araştırmalarına yansımaları, ekosistemlerde ortaya çıkan süreçlerin detaylı incelenmesinde matematiksel modellerin kullanılmasını daha da gerekli kılmaktadır. Ekosistemdeki süreçlerin biyolojik-kimyasal-fiziksel, matematiksel, mantıksal temsili modellerinin yapılması deneysel ve teorik bilgilere bağlı olmaktadır. Sistemli yaklaşım model oluşturmanın metodolojik temelini oluşturduğundan, bu yaklaşımın temel kavramlarının (model bileşenleri, bileşenleri etkileyen dış ortam) belirlenmesi öncelikli problemlerdendir. Bu amaçla, “ekosistem”, “model’’, ve “modelleme” kavramları sistemli bir yaklaşım ile ele alınarak, modellerin genel sınıflandırılması, modelleme yöntemindeki gerekli aşamalar (konunun belirlenmesi, kavramlaştırma, özelleştirme, gözlem, tespit, kontrol, inceleme ve optimizasyon) incelenmiş ve genel olarak tarım sistemlerinde uygulanabilir önemli bazı matematiksel modeller (temel kütle taşınım modelleri, verimlilik ve bitki büyüme modelleri) irdelenmiştir.

___

  • Aleşin, V.D., Brejnev, A.Î., 1980. Prikladnaya model produktivnosti posevov. Nauçno-Texn.Bülleten po Agronom. Fizike, 42: 45-49.
  • Antonopoulos, V.Z., 2006. Water movement and heat transfer simulations in a soil under ryegrass. Biosystems Engineering, 95 (1): 127-138.
  • Aparin, B.F., 1988. Parametrı plodorodiya poçv i sistemı upravleniya. Trudı Poçvennıy İnstituta im. V.V.Dokuçayeva, vıp. 48. Moskova, s. 12-15.
  • Azizov, K.Z., Mamedov, A., A., 1986. Opredeleniye znaceniy gidroximiçeskix parametrov, promıvnıx norm i solevogo rejima poçvogruntov. V kn.: Peredovıye Metodı Organizaçii i Texnologii İnjenernıx İzıskaniy dlya Meliorattivnogo Styroitelstva. Sbornik Nauçnıx Trudov, Moskova, VO ’’Soyuzvodproyekt’’, s. 47-56.
  • Badescu, V., 2007. Simple and accurate model for the ground heat exchanger of a passive house. Renewable Energy, 32: 845-855.
  • Bayraklı, F, Ekberli, İ.A., Cülser, C., 1999. Azerbaycan Mil Ovası topraklarının verimlilik düzeylerinin Deneysel ve Matematiksel Olarak Değerlendirilmesi. OMÜ Zir.Fak. Dergisi, 14 (2): 138-153.
  • Bosatta, E., Agren, G.I., 1995. Theoretical analyses of interactions nitrogen and soil organic matter. European Journal of Soil Science, 46 (49): 109-114.
  • Claus, St., Mühle, H., 1989. Ein dynamisches modell der Ertragsbildung winterweizen als entscheidungshilfe für die Züchtung. Arch. Züchtungsforsch., Berlin 19, 4: 283-290.
  • Clayden, B., Hollis, J.M. 1984. Criteria for Differentiating Soil Series. Technical. Monograph No. 17. Soil Survey of England and Wales, Harpenden.
  • Cyert, R. M.,1966. A description and evaluation of some firm simulations. In Proceedings of the IBM Scientific Computing Symposium on Simulation Models and Gaming (White Plains, N.Y.), IBM, White Plains, N.Y.,3-22.
  • Dale, M. B., 1970, Systems analysis and ecology. Ecology, 51 (1): 2-16.
  • Santos, G. H., Mendes, N., 2006. Simultaneous heat and moisture transfer in soils combined with building simulation. Energy and Buildings, 38: 303-314.
  • Ekberli, İ., 2006. Isı iletkenlik denkleminin çözümüne bağlı olarak topraktaki ısı taşınımına etki yapan bazı parametrelerin incelenmesi. O.M.Ü. Zir. Fak. Dergisi 21(2): 179-189.
  • Ekberli, İ., 2006. Determination of hydro-chemical parameters of salt transportation in soil by using the solution of convective diffusion equation. J. of Applied Sci. 6(6): 1243-1247.
  • Ekberli,İ., 2006. Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature variance in finite soil layer. J. of Applied Sci. 6(7): 1520-1526.
  • Ekberli, İ., 2006. Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature varianse in finite soil layer. J. Applied Sci., 6(7): 1520-1526.
  • Ekberli, İ., Horuz, A., Korkmaz, A., 2005. İklim faktörleri ve farklı azot dozlarının mısır bitkisinde verim ve azot kapsamına etkisi. OMÜ Zir.Fak. Dergisi, 20(1): 12-17.
  • Ekberli, İ., Kerimova, E., 2005. Azerbaycan’ın Şirvan bölgesinde sulanan killi bir toprağın bazı fiziksel kimyasal parametrelerinin değişimi. OMÜ Zir. Fak. Dergisi, 20(3): 54-59.
  • Frans, Dj., Tornli, Dj. X.M., 1987. Matematiçeskiye Modeli v Selskom Xozyaystve. Moskow, Agropromizdat.
  • Gordon R. Conway, 1977. Mathematical models in applied ecology. Nature, 269: 291-297.
  • Gilmanov, T.G., 1978. Mathematical Modelling of Biochemical Cycles in Grass Ecosystems. Moscow State University, Moscow.
  • Gülser, C., Candemir, F., İç, S., Demir, Z., 2007. Pedotransfer modellerle ince bünyeli topraklarda doygun hidrolik iletkenliğin tahmini. V. Ulusal Hidroloji Kongresi. Bildiriler Kitabı. Orta Doğu Teknik Üniversitesi, 563-569, 5-7 Eylül 2007, Ankara.
  • Gülser, C.,Ekberli, İ., 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. J. of Applied Sci. 4(3): 418-423.
  • Gülser, C., Ekberli, İ., 2002. Toprak sıcaklığının profil boyunca değişimi. O.M.Ü. Zir. Fak. Dergisi, 17(3): 43 47.
  • Haviland, M.D., 1926. Forest, Stepe and Tundra, studies in animal environment.,Cambridge.
  • Kara, T., Ersin K., Apan, M., 2008. Using empirical equations to determine appropriate furrow length under field condition. Pakistan Journal of Biological Sciences, 11(2): 220-225.
  • Keulen, H. van., 1975a. Evaluation of models. In Ecological Models, with Emphasis on Grassland Models. G. Arnold and C.T. De Wit, eds., Simulation Monographs Pudoc, Wageningen (published: summer 1975).
  • Keulen, H. Van., 1975b. Simulation of water use and herbage growth in arid regions. Wageningen, Pudos.
  • Keulen, H. van., 1976. Evaluation of models. In Critical Evaluation of Systems Analysis in Ecosystem Research and Management (Eds. G. W. Arnold and C. T. de Wit), Center for Agriculture Publishing and Documentation (PUDOC), Wageningen, Netherlands, 22-29
  • Keulen, H. van, van Diepen, C.A., 1990. Crop growth models and agro-ecological characterization. In: Scaife, A. (ed.): Proceedings of the First Congress of the European Society of Agronomy, CEC, ESA, INRA, session 2:1-16. 5-7 December 1990, Paris.
  • Keulen, H. van, Wolf, J., (eds.), 1986. Modelling of agricultural production: weather, soils and crops. Simulation Monographs, Pudoc, Wageningen, The Netherlands.
  • Korkmaz, A., Bayraklı, F., Cülser, C., Ekberli, İ.A., 2000. Bafra ve Çarşamba Ovalarında mısır bitkisinin azotlu ve fosforlu gübre ihtiyacının belirlenmesinde matematiksel modellerin uygulanabirliği. OMÜ Zir.Fak. Dergisi, 15 (1): 33-40.
  • Köksal, H., Kanber, R., 2003. Bitki büyüme modelleri. Sulama ve drenaj mühendisliği, Köy Hizmetleri Genel Müdürlüğü, Ankara, Yayın No: 122, s.188-201.
  • Krapivin, V.F., 1993. Mathematical model for global ecological investigations. Ecological Modelling, 67 (2 4): 103-127.
  • Krapivin, V.F., Svirezhev, Yu.M, Tarko, A.M., 1982. Mathematical modelling of the Global Biosphere Processes. Nauka, Moscow.
  • Kuzneçova, I. V., 1979. O nekotorix kriteriyax oçenki fiziçeskix svoystv poçv.Poçvovedeniye (Sovyet Soil Science), 3: 81-88.
  • Lapidus, L., Amundson, N.R., 1952. A descriptive theory of leaching. Mathematics of adsorption beds. J. Phys. Chem., 56: 984 - 988.
  • Lıkov, A.V., 1948. Teploprovodnost Nestaçionarnıx Proçessov. GEI, Moskova, 216-219.
  • Li, L., Barry, D.A., Culligan-Hensley, P.J. and Bajracharya, K., 1994. Mass transfer in soils with local stratification of hydraulic conductivity, Water Resources Research, 30(11): 2891-2900.
  • Li, X., Zhao, J., Zhou, Q., 2005. Inner heat source model with heat and moisture transfer in soil around the underground heat exchanger. Applied Thermal Engineering, 25:1565-1577.
  • Luikov, A. V., 1975. Systems of differential equations of heat and mass transfer in capillary-porous bodies (review).Int. J. Heat and Mass Transfer., 18: 1-14
  • Mikayilov, F.D., 2007.Determination of salt-transport model parameters for leaching of saturated superficially salted soils. Eurasian Soil Science, 40(5):544-554.
  • Mikailov, F. D., Azizov, K.Z., 1981. Movement of salts in soils with unstable uniform filtration. Sovyet Soil Science, 5: 69-73.
  • Mikaylov, F.D., Azizov, K.Z., 1985. Determination of the hydrochemical parameter of dispersion by salts transfer in the course of washing of saline water-saturated soils. Sovyet Soil Science, 5: 84-90.
  • Mikailov, F.D., Ekberov, I.A., 1999. Analytical analysis of mass transporation in heteregenous media. 1ST Turkish World Mathematics Semposium, Abstracts, 163, 29 June-2 July 1999., Elazıg/ Turkey.
  • Mikayilov, F., Gulser, C., Bayrakli, F., Ekberov, I., 2002. Determination of soil polutants movement by using mathematicals models. Proceedings of the Sixth Baku International Congress “Energy, Ecology, Economi”, 431-436, May 30-June 3,2002,Baku / Azerbaijan.
  • Mikailov, F.D., Pachepsky, Ya.A., 2003. Analytical solution of the equation of the nonequilibrium solute transport in soil with dual porosity. Eurasian Soil Sci. 4: 441 450.
  • Nemes, A., Rawls, W.J., Pachepsky, Y.A., 2005. Influence of organic matter on estimation of saturated hydraulic conductivity. Soil Sci. Soc. Am.J., 69: 1330-1337.
  • Nerpin, S.B., Çudnovski, A.F., 1975. Energo-i Massoobmen v Sisteme Rasteniye-Poçva-Vozdux. Leningrad, Gidrometeoizdat.
  • Nobuo, T., Mitsuhiro, I., Feike J. L., 2003. Hydrodynamic dispersion in an unsaturated dune sand. Soil Sci. Soc. Am. J. 67: 703-712.
  • Pachepsky, Ya.A., 1990. Mathematical Models of Physico chemical Processes in Soils. Nauka, Moskow.
  • Pachepsky, Y.A., Rawls, W.J., 2003. Soil strukture and pedotransfer funnctions. Europ. J. of Soil Sci., 54: 443 451.
  • Pachepsky, Y.A., Tilin, D., Varallyay, G., 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J., 60: 727 733.
  • Patten, B. C.,1975a. A reservoir cove ecosystem model. Transactions of the American Fisheries Society, 104(3): 596-619.
  • Patten, B. C.,1976. "Ecosystem modeling and reservoir management." Proceedings of the Oklahoma Academy of Science 5: 1-20.
  • Patten, B. C., Egloff, D.A., Richardson., T.H., 1975b. Total Ecosystem Model for a cove in Lake Texoma. Systems Analysis and Simulation Ecology, Academic Press, Inc. Vol. IIII, p: 205-421.
  • Penning de Vries, F.W.T., van Laar, H.H. (eds), 1986. Simulation of Plant Growth and Crop Production. Leningrad, Gidrometeoizdat, s. 32-36.
  • Platonov, V.A., Çudnovski, A.F., 1984. Modelirovaniye agrometeorologiceskix usloviy i optimizaçiya agrotexniki (ASU TP v zemledelii). Leningrad, Girdometeoizdat, p. 280.
  • Poletaev, I.A.,1966.On mathematical models of elementary processes in biogeocenoses. Problems of Cybernetics, Nauka, Moscow, 6: 171-190.
  • Poluektov R.A., 1991. Dinamiçeskiye Modeli Agroekosistemı. Leningrad, Gidrometeoizdat.
  • Rachhpal-Singh, Kirk, G.J.D., 1993. A model for predicting the fate of nitrogen fertilizer in lowland ricefields. I.Theory. Journal of Soil Science, 44(2): 271-283.
  • Rao, P.S.C., Rolston, D.E., Jessup, R.E., Davidson, J.M., 1980. Solute transport in aggregated porous media: Theoretical and experimental evalutaion. Soil Sci.Soc. Am. J., 44:1139-1146.
  • Rees, A.R., Thornley, J.H.M., 1973. A simulation of tulip growth in the field. Ann. Bot., 37: 121-131.
  • Ross, Yu. K., 1975. Matematiceskoye modelirovaniye produkçionnogo proçessa i urojaya.V kn.: Programmirovaniye Urojayev c.-x. kultur. Nauçnıye Trudı VASXNÎL. Moskow, Kolos, 415-427.
  • Sezgin, U., Çelik, H., 1999. Leaf area prediction models (Uzçelik-I) for different horticultural plants. Turkish Journal of Agriculture and Forestry, 23(6): 645-650.
  • Shelford, V.E., 1913. Animal Communities in Temperate America. Chicago, University of Chicago Pres.
  • Shukla, M.K., Kastanek, F.J., Nielsen, D.R., 2002. Inspestional analysis of convective-dispersion equation and application on measured breakthrough curves. Soil Sci.Soc. Am. J., 66 (4): 1087-1094.
  • Smith, F.E., 1970. Analysis of ecosystems. In: Analysis of Temperate Forest Ecosystems (edited by D. Reichle), New York, Springer-Verlag, 7-18.
  • Summerhayes V.S., Elton C.S.,1923. Contributions to the ecology of spitsbergen and Bear Island. Journal of Ecology, 11 (2): 214-286.
  • Summerhayes V. S., Elton, C. S., 1928. Further contribu tions to the ecology of Spitsbergen. Journal of Ecology, 6: 193-268.
  • Şatilov, İ.S., Çudnovski, A.F., 1980. Agrofiziçeskiye, Agrometeorologiçeskiye Agrotexniçeskiye Osnovı Programmirovaniya Urojaya. Leningrad, Gidrometeoizdat.
  • Şaylan, L., Eitzinger, J., 1996. SIMWASER bitki gelişimi modeli ile soya bitkisinin gelişiminin belirlenmesi, Kültürteknik Derneği, TOPRAKSU Dergisi, 5(2): 8-13.
  • Topçu, S., 1996.Calibration/Validation of the maize growth simulation model "Cornf" for southern region of Germany. Turkish Journal of Agriculture and Forestry, 20(2): 99-105.
  • Topçu, S., Beyturan, A.N., 1999. ’’TOMGRO’’ sera domates büyüme modelinin Çukurova örtüaltı yetiştiriciliği koşullarında test edilmesi. Türk Tarım ve Ormancılık Dergisi, 23 (Ek Sayı 3): 749-755.
  • van Diepen, C.A., Wolf, J., van Keulen, H., Rappoldt, C., 1989. WOFOST: A simulation model of crop production. Soil Use Manage. 5, 16-24.
  • van Genuchten, M. Th., Wierenga, P. J, O’conner, G.A., 1977. Mass transfer studies in sorbing porous media: III. Experimenral evaluation with 2,4,5-T. Soil Sci.Soc.Am. J. 41:278-285.
  • Verigin,N.N., Azizov, K.Z., Mikayyilov, F. D., 1986. On the impact of boundary conditions in simulation experiments on salts transfer in soils during washing. Sovyet Soil Science. 6: 67-73.
  • Zaslavskiy, B., G., Poluektov, R.A., 1988. Upravleniye Ekologiçeskimi Sistemami. Moskow, Nauka.
  • Watt, K. E. F. 1966. Systems Analysis in. Ecology. New York, Academic Pres.
  • Wit, C.T., Penning de Vries, F.W.T., 1982. Lanalyse des systemes de production primaire. In: La Productivite des Paturages Saheliens. Agr. Res. Rep., 918, Pudoc, Wageningen, 20-23.
  • Wright, R. D.,1972.Validating dynamic models: An evaluation of tests of predictive power. In: Proc. Summer Computer Simulation Conference. San Diego, California, 1286-1294.
  • Wright, A, 1971. Farming systems, models and simulation. In J.B. Dent and J.R. Anderson, eds., Systems Analysis in Agricultural Management, Sydney: Wiley, 17-34.