Şeker pancarı tohumlarında depolama koşullarının ve süresinin çimlenme üzerine etkileri

Yüksek verim ve kaliteye sahip şeker pancarı üretimi için kaliteli tohumluk kullanılması esastır. Şeker pancarı tohumları ya ham (işlenmemiş) ya da işlenmiş olarak depolanmaktadır. Tohumlarda depolama ömrü, tohum üretimi sırasında uygulanan kültürel işlemler, çevresel faktörler, çeşit özelliği, tohumun kimyasal içeriği, tohum olgunluk durumundan etkilenmektedir. Bu çalışmada, Türkiye’de üretimi yapılan şeker pancarı tohumlarının 17 yıl süre ile depolanmasının çimlenme oranları üzerine etkileri incelenmiştir. Hasat edildiklerinde %12 nem içeriğine sahip olan tohumlar, sıcaklığı ve nemi kontrol edilmeyen depolarda saklanmıştır. Depo sıcaklıkları Aralık (1 oC), Ocak (2 oC) ve Şubat (3 oC) aylarında en düşük olurken, Temmuz ve Ağustos aylarında 29 oC’ye yükselmiştir. Deponun nisbi nemi Ocak ayında %69 ,Temmuz ve Eylül aylarında ise %22 olarak gerçekleşmiştir. Üretiminden sonra 17 yıl süre ile saklanan 12 partiye ait ham tohumlarda en yüksek çimlenme oranları %92 ile 3, 6 ve 7 nolu partilerden elde edilmiş ve 3 partiye ait işlenmiş tohumlarda ise %93-95 arasında değişmiştir. Uzun süre depolanan tohumların sera testlerinde bütün tohum partilerinde çimlenme oranlarına ait değerler %82 ile %94 arasında elde edilmiştir. Tohumların tarla çıkış oranları laboratuvar ve sera çimlenme testleri ile bir paralellik göstermiş ve çimlenme oranları %88 ile %90 arasında değişmiştir.

It is essential to use quality seeds for the production of sugar beet (Beta vulgaris L.) with high yield and quality standards. Sugar beet seeds are stored either raw (unprocessed) or processed form. Logetivity of seeds in storage is affected by cultural processes applied during seed production, environmental factors, genetic characteristics of the variety, chemical content of the seed, and seed maturity status. In this study, the effects of storage period of 17 years on germination of stored sugar beet seeds produced in Turkey were investigated. When harvested, seeds with a moisture content of 12% were stored in storage whose temperature and humidity parameters were not controlled. While storage temperatures were the lowest in December (1 oC), January (2 oC) and February (3 oC), it increased to 29 oC in July and August. The relative humidity of the storage was 69% in January and 22% in July and September. The highest germination rate of raw seeds, which were stored for 17 years after production was obtained as 92% from the lots 3, 6 and 7 and 93-95% in processed seeds of these 3 lots. In the greenhouse tests of stored seeds, the values of germination rates in all seed lots were obtained between 82% and 94%. Field emergence rates of seeds showed a parallelism with laboratory and greenhouse germination tests, germination rates varying between 88% and 90%.

___

  • Arın, L. 2018. Tohum depolama. Türktob, 26:8-10.
  • Blunk, S., Malik, A.H., de Heer, M.I., Eklabad, T., Bussell J., Sparkes D., Fredlund K., Sturrock C., Mooney S. 2017. Quantification of seed–soil contact of sugar beet (Beta vulgaris) using X-ray Computed Tomography. Plant Methods, 13:71. https://doi.org/ 10.1186/s13007-017-0220-4
  • Chomontowski, C., Wzorek, H., Podlaski, S. 2020. Impact of sugar beet seed priming on seed quality and performance under diversified environmental conditions of germination, emergence and growth. Journal of Plant Growth Regulation, 39:183-189. https://doi.org/10.1007/s00344-019-09973-2.
  • Copeland, L.O., McDonald, M.B. 2001. Seed Longevity and Deterioration. Copeland LO, McDonald MB. (eds.). Principles of seed science and technology. 4th edn. Norwell, Massachusetts: Kluwer Academic Publishers, pp. 181-220.
  • Hacıseferogulları, H. 2005. Vakumlu tip pnömatik hassas ekim makinası ile şeker pancarı ekiminde sıra üzeri bitki dağılım düzgünlüğü ve tarla çıkış oranları üzerine ekim mesafelerinin ve ilerleme hızlarının etkisi. S.Ü. Ziraat Fakültesi Dergisi, 19(35):30-40.
  • Harrington, J.F. 1973. Biochemical Basis of Seed Longevity. Seed Science &Technology, 1:453-461.
  • ISTA. 1985. International Rules for Seed Testing. The International Seed Testing Association (ISTA), Zürich, Switzerland. Seed Science and Technology,13 (2):299-513.
  • Kameswara, R, N., Dulloo, M.E., Engels, J.M.M. 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol., 64:1061– 1074. https://doi.org/10.1007/s10722-016-0425-9
  • Klyachenko, O., Likhanov, A., Volodymyr, G. 2018. Tissue and biochemical barriers of sugar beet (Beta vulgaris L. Provar. Altissima doell.) Pericarp. Journal of Microbiology, Biotechnology and Food Sciences. 8(1):663-667.
  • Kockelmann, A., Meyer, U. 2006. Seed Production and Quality. In: Draycott, A.P. (ed). Sugar beet. Blackwell Publishing Oxford, pp. 89–113.
  • Kockelmann, A., Tilcher, R., Fischer, U. 2011. Seed Production and Processing. Sugar Tech, 12:267– 275. https://doi.org/10.1007/s12355-010-0039-z
  • Leprince, O., Pellizzaro, A., Berriri, S., Buitink, J. 2017. Late seed maturation: drying without dying. Jouırnal of Experimental Botany, 68:827–841. https://doi.org/10.1093/jxb/erw363
  • Li, D.Z., Pritchard, H.W. 2009. The science and economics of ex situ plant conservation. Trends in Plant Science, 14:614–621. https://doi.org/10.1016/ j.tplants.2009.09.005
  • Liu, W., Pan, X., Li, Y., Duan, Y., Min, J., Liu, S., Sheng, X., Li, X. 2018. Detection and validation of QTL s associated with seed longevity in rice (Oryza sativa L.). Plant Breeding, 137:546–552. https:// doi.org/10.1111/pbr.12611.
  • Long, R.L., Gorecki, M.J., Renton, M., Scott, J.K., Colville, L., Goggin, D.E., Commander D.A., Westcott H.C., William E. 2015. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Rev., 90:31-59. https://doi.org/10.1111/brv.12095
  • Longden, P.C. 1986. Influence of the seed crop environment on the quality of sugar beet seed. Proc. 49th IIRB Congress, Brussels, pp. 1-16.
  • Maude, R.B., Bambridge, J.M. 2007. Effects of seed treatments and storage on the incidence of Phoma betae and the viability of infected red beet seeds. Plant Pathology, 34:435-437. https://doi.org/ 10.1111/j.1365-3059.1985.tb01384.x.
  • Merritt, D.J., Martyn, A.J., Ainsley, P., Young, R.E., Seed, L.U., Thorpe, M. 2014. A continental-scale study of seed lifespan in experimental storage examining seed, plant, and environmental traits associated with longevity. Biodivers. Conserv., 23:1081-1104. https://doi.org/10.1007/s10531-014- 0641-6.
  • Milford, G. 2006. Plant structure and crop physiology. In: Draycott, A.P. (Ed), Sugar Beet. Blackwell Publishing Ltd. Oxford, pp. 30-49.
  • Orzeszko-Rywka, A., Podlaski, S, 2003. The efect of sugar beet seed treatments on their vigour. Plant, Soil and Environment, 49(6):249–254.
  • Priestley, D.A. 1986. Seed aging: implications for seed storage and persistence in the soil. NCROL; 1st Edition (April 1, 1986).
  • Rajjou, L, Debeaujon, I. 2008. Seed longevity: survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 331:796–805.
  • Righetti, K., Vu, J.L., Pelletier, S., Vu, B.L., Glaab, E., Lalanne, D. 2015. Inference of longevity related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. Plant Cell, 27:2692-2708. https://doi.org/10.1105/tpc.15. 00632
  • Salimi, Z., Boelt, B. 2019. Classification of processing damage in sugar beet (Beta vulgaris) seeds by multispectral image analysis. Sensors, 19 (10):2360. https://doi.org/10.3390/s19102360
  • Sarıpınar, Z. 2011. Şeker pancarı tohumluğunda elektrostatik ayırma olanakları. Yüksek Lisans Tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, 71s, Ankara.
  • Sektör Raporu. 2019. Türkşeker 2020. Ankara. https://www.turkseker.gov.tr/data7dokumanlar/2019 _ Sektor_Raporu.pdf. (Erişim tarihi: 27 Temmuz 2020).
  • Sliwinska, E., Jing, H.C., Job, C., Job, D., Bergervoet, J.H.W., Bino, R.J., Groot, S.P.C. 1999. Effect of harvest time and soaking treatment on cell cycle activity in sugar-beet seeds. Seed Science Research, 9:91-99.
  • Solberg, S.Ø., Yndgaard F, Andreasen C, Bothmer R, Loskutov I.G., Asdal A. 2020. Long-Term Storage and Longevity of Orthodox Seeds: A Systematic Review. Frontiers in Plant Sciences, 11:1007. https://doi.org/10.3389/fpls.2020.01007
  • Steinbrecher, T, Leubner-Metzger G. 2017. The biomechanics of seed germination. Journal of Experimental Botany, 68(4):765-783. https://doi.org/ 10.1093/jxb/erw428.
  • Şehirali, S. 1997. Tohumluk ve Teknolojisi, Trakya Üniversitesi Ziraat Fakültesi Yayınları. Tekirdağ.
  • Walters, C., Wheeler, L.M. and Grotenhuis, J.M. 2005. Longevity of seeds stored in a genebank: species characteristics. Seed Science Resarch, 1:1-20. https://doi.org/10.1079/SSR2004195
  • Wang, T., Hou, L., Jian, H., Di, F., Li, J. and Liu, L. 2018. Combined QTL mapping, physiological and transcriptomic analyses to identify candidate genes involved in Brassica napus seed aging. Molecular Geneticts and Genomics, 293:1421–1435. https:// doi.org/10.1007/s00438-018-1468-8
  • Wozny, D., Kramer, K., Finkemeier, I., Acosta, I.F., Koornneef, M. 2018. Genes for seed longevity in barley identified by genomic analysis on near isogenic lines. Plant Cell Environ., 41:1895-1911. https://doi.org/10.1111/pce.13330
  • Zinsmeister, J., Leprince O., Buitink J. 2020. Molecular and environmental factors regulating seed longevity. Biochemical Journal, 477:305-323. https://doi.org/ 10.1042/BCJ20190165
Anadolu Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-8750
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniv. Ziraat Fak.