Öz This paper describes a novel theory for modeling water flow in porous media, such as soils, using breakthrough curves of nonreactive chemicals. Miscible displacement tests of chloride were conducted in repacked sand columns (30.0 cm length and 8.0 cm id.) that were prepared using washed sand particles with diameters of 2.0-1.0, 1.0-0.5, 0.5-0.25, and
___
Angulo-Jaramillo, R., Gaudet, J.P.,Thony, J.L., Vauclin, M., 1996. Measurement of hydraulic properties and mobile water content of a field soil. Soil Sci. Soc. Am. J. 60: 710-715.
Biggar, J.W., Nielsen, D.R., 1962. Miscible displacement: II. Behavior of tracers. Soil Sci. Soc. Am. Proc. 25: 125.
Boersma L, Cary, J.W, Evans, D.D., Ferguson, A.H., Gardner, W.H., Hanks, R.J., Jackson, R.D., Kemper, W.D., Miller, D.E., Nielsen, D.R., Uehara, G., 1972. Soil Water. ASA, Madison, WI.
Carman, P.C., 1948. Some physical aspects of water flow in porous media. Discuss. Faraday Soc. 3: 72-77.
Carman, P.C., 1956. Flow of gases through porous media. Butterworths Scientific Publications, London.
Deeks, L.K., Williams, A.G., Dowd, J.F. and Scholefield, D., 1999. Quantification of pore size distribution and movement of solutes through isolated soil blocks. Geoderma90: 65-86
Ersahin, S., Papendick, A.R., Smith, J.L. Keller, C.K., and Manoranjan, V.S., 2002. Macropore transport of bromide as influenced by soil structure differences. Geoderma, 108 (3-4): 207-223.
Gardner, W.H., 1986. Early soil physics to the mid-20th century. Adv. Soil Sci. 4: 1-101.
German, P., Beven, K., 1981. Water flow in soil macropores I. An experimental approach. Eur. J. Soil Sci. 32: 1-13.
Hillel, D., 1980. Introduction to Soil Physics. Academic Pres, Inc. San Diego, CA.
Jury, A.W., Gardner, W.R., Gardner, W.H., 1991. Soil Physics. Forth Edition, John Willey & Sons, Inc., New York, NY.
Kamra, S.K., Lennartz, B., 2005. Quantitative indices to characterize the extent of preferential flow in soil. Environ. Modeling & Software, 20: 903-915.
Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute, (Editor) Methods of Soil Analysis, Part 1, 2nd edn. Agron. Monogr 9, ASA, Madison, WI, pp 687–734.
Kozeny, J., 1927. Über kapillare Leitung des Wassers im Boden. Sb Akad Wiss Wien, Math-naturw Kl Abt IIa, 136: 271-306.
Kung, K.S.J., Hanke, J.S.M., Helling, C.S., Kladivko, E.J., Gish, T.J., Steenhuis, T.S., Jaynes, D.B., 2005. Quantifying pore-size spectrum of macropore-type preferential pathways. Soil Sci. Soc. Am. J. 69: 11961208.
Nielsen, D.R., Biggar, J.W., 1961. Miscible displacement. I. Experimental information. Soil Sci. Soc. Am. Proc. 25: 1-5.
Nielsen, D.R., Biggar, J.W., 1962. Miscible displacement. III. Theoretical considerations. Soil Sci. Soc. Am. Proc. 26: 216-221.
Nielsen, D.R., Biggar, J.W., 1963. Miscible displacement. IV. Mixing in glass beads. Soil Sci. Soc. Am. Proc. 27: 10-13.
Radulovich, R., Solorzano, E., Sollins, P., 1989. Soil macropore size distribution from water breakthrough curves. Soil Sci. Soc. Am. J. 53: 556-559.
Stephens, D.B., 1996. Vadose Zone Hydrology. Lewis Publishers, CRC Press Inc, Boca Raton, FL.
Tuli, A., 2002. Pore geometry effect on gaseous diffusion and convective fluid flow in soils. Ph.D. thesis, University of California, Davis.
van Genuchten M.Th., Wierenga, P.J., 1977. Mass transfer in sorbing porous media. II. Experimental evaluation with tritium (3H2O). Soil Sci. Soc. Am. J. 41: 272-278.
Vogel, H.J., Roth, K., 1998. A new approach for determining effective soil hydraulic functions. Eur. J. Soil Sci. 49: 547-556.