Bakteriyel patojenlere karşı bitkilerdeki dayanıklılık mekanizmaları

Son yıllarda yapılan çalışmalar, bitki ve patojen arasındaki moleküler etkileşim mekanizmalarını ortaya çıkarmıştır. Bitki bağışıklık sistemi, patojen veya mikropla ilgili moleküler yapılar (PAMP’lar veya MAMP’lar) tarafından harekete geçirilir. Farklı PAMP’lar genellikle bitkilerdeki farklı tanılayıcı hücre yüzey reseptörleri (PRR’ler) tarafından algılanır ve bağışıklık sistemi için hücrelerarası sinyal iletişimi aktive edilir. Ancak patojenler, PAMP’a dayalı bağışıklık sistemini baskılamak için çok sayıda virulens faktörleri geliştirirler. Gram negatif bitki patojeni bakterilerin çoğu, virulens özellikteki efektör proteinlerini konukçu hücresine aktarmak için tip III salgı sistemine sahiptirler. Bu efektör proteinler bitki bağışıklık sistemini engeller ve hastalık gelişimini teşvik eder. Diğer taraftan bitkiler ise patojenlere karşı ikinci bir bağışıklık sistemine sahiptir. Özellikle bazı bitkiler, efektöre dayalı harekete geçen bağışıklık sisteminde efektör proteinleri etkili bir şekilde inaktive eden ve hücrelerarasında bulunan hastalığa karşı dayanıklılık sağlayan özel proteinlere (R proteinlerine) sahiptir.

Plant resistance mechanisms to bacterial pathogens

Recent studies have presented molecular interaction mechanisms between plant and pathogen. The plant innate immunity system is triggered by the pathogen or microbe associated molecular patterns (PAMPs/MAMPs). Different PAMPs are often perceived by distinct cell surface pattern-recognition receptors (PRRs) and activate intracellular signaling pathways in plant cells for immunity system. However, pathogens have evolved multiple virulence factors to suppress PAMP-triggered immunity. Most of gram negative plant pathogenic bacteria have the type III secretion system to transfer of virulence effector proteins into host cell. These effector proteins inhibit plant immunity system and support pathogenesis. On the other hand, plants have the secondary plant innate immunity system against pathogens. Especially, some plants have the specific intracellular disease resistance (R) proteins which effectively inactivate virulence effectors in effector-triggered immunity system.

___

  • Abramovitch, R.B., Anderson, J.C., Martin, G.B. 2006a. Bacterial elicitation and evasion of plant innate immunity. Molecular Cell Biology, 7: 601-611.
  • Abramovitch, R.B., Janjusevic, R., Stebbins, C.E., Martin, G.B. 2006b. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc. Natl Acad. Sci. USA, 103, 2851–2856.
  • Ade, J., Innes, R.W. 2007. Resistance to Bacterial Pathogens in Plants. Encyclopedia of Life Sciences, John Wiley & Sons, Ltd., doi:10.1002/9780470015902.a0020091.
  • Ade, J., DeYoung, B.J., Golstein, C., Innes, R.W. 2007. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences of the USA 104:2531–2536.
  • Alfano, J.R., Collmer, A. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385–414. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415, 977–983.
  • Ausubel, F.M. 2005. Are innate immune signaling pathways in plants and animals conserved? Nature Immunol. 6, 973–979.
  • Bender, C.L., Alarcon-Chaidez, F., Gross, D.C. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63, 266–292.
  • Bent, A.F., Innes, R.W., Ecker, J.R., Staskawicz, B.J. 1992. Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthamonas pathogens. Mol. Plant Microbe Interact., 5:372-378.
  • Buttner, D., Bonas, U. 2006. Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Curr. Opin. Microbiol. 9, 193–200.
  • Chang, J.H., Urbach, J.M., Law, T.F., Arnold, L.W., Hu, A., Gombar, S., Grant, S.R., Ausubel, F.M., Dangl, J.L. 2005. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. PNAS, 102(7),2549–2554.
  • Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., Felix, G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell, 18:465-476.
  • Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., Cascales, E. 2005. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485.
  • Creelman, R.A., Mullet, J.E. 1997. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell, 9:1211-1223.
  • Dangl, J.L., Jones, J.D. 2001. Plant pathogens and integrated defense responses to infection. Nature, 411:826-833.
  • Deslandes, L., Olivier, J., Peeters, N. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the USA, 100: 8024–8029.
  • Espinosa, A., Guo, M., Tam, V.C., Fu, Z.Q., Alfano, J.R. 2003. The Pseudomonas syringae type IIIsecreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol.Microbiol. 49, 377–387.
  • Felix, G., Boller, T. 2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278, 6201–6208.
  • Genin, S., Boucher, C. 2004. Lessons learned from the genome analysis of Ralstonia solanacearum. Annu. Rev. Phytopathol. 42, 107–134.
  • Glickmann, E., Gardan, L., Jacquet, S., Hussain, S., Elasri, M., Petit, A., Dessaux, Y. 1998. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant Microbe Interact. 11, 156–162.
  • Gomez-Gomez, L., Felix, G., Boller, T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant Journal, 18:277–284.
  • Gomez-Gomez, L., Boller, T. 2002. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci. 7, 251–256.
  • Hann, D.R., Rathjen, J.P. 2007. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J., 49:607-618.
  • Hauck, P., Thilmony R., He, S.Y. 2003. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proceedings of the National Academy of Sciences of the USA, 100:8577–8582.
  • He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nurnberger, T., Sheen, J. 2006. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK Arabidopsis innate immunity. Cell, 125, 563–575.
  • Hilpert, B., Bohlmann, H., Camp, R.O., Przybyla, D., Miersch, O., Buchala, A., Apel, K. 2001. Isolation and characterization of signal transduction mutants of Arabidopsis thaliana that constitutively activate the octadecanoid pathway and form necrotic microlesions. Plant J., 26:435-446.
  • Hoffman, T., Schmidt, J.S., Zheng, X., Bent, A.F. 1999. Isolation of ethylenein sensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119:935-949.
  • Jackson, A.O., Taylor, C.B. 1996. Plant–microbe interactions: life and death at the interface. Plant Cell, 8:1651-1668.
  • Janjusevic, R., Abramovitch, R.B., Martin, G.B., Stebbins, C.E. 2006. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science, 311, 222–226.
  • Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D. 2006. A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences of the USA, 103: 18002–18007.
  • Kim, Y.J., Lin, N.C., Martin, G.B. 2002. Two distinct pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell, 109:589–598.
  • Kim, M.G., da Cunha, L., McFall, A.J. 2005. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–759.
  • Kunkel, B.N., Brooks, D.M. 2002. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5:325–331.
  • Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 16, 3496–3507.
  • Leigh, J.A., Coplin, D.L. 1992. Exopolysaccharides in plant–bacterial interactions. Annu. Rev. Microbiol. 46, 307–346.
  • Li, L., Li, C., Howe, G.A. 2001. Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol. 2001, 127:1414-1417.
  • McDowell, J.M., Woffenden, B.J. 2003. Plant disease resistance genes: recent insights and potential applications. TRENDS in Biotechnology, 21(4), 178-183.
  • Melotto, M., Underwood, W., Koczan, J. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell, 126: 969–980.
  • Mudgett, M.B. 2005. New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu. Rev. Plant Biol. 56, 509–531.
  • Navarro, L., Dunoyer, P., Jay, F. 2006a. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312: 436–439.
  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D.G. 2006b. A plant miRNA contributes to antibacterial resistance by repressing auxin signalling. Science, 312, 436–439.
  • Nawrath, C., Metraux, J. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11:1393-1404.
  • Norman-Setterblad, C., Vidal, S., Palva, E.T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Microbe Interact., 13:430-438.
  • Pedley, K.F., Martin, G.B. 2005. Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol. 8, 541–547.
  • Pieterse, C.M.J., van Loon, L.C. 1999. Salicylic acid-independent plant defense pathways. Trends Plant Sci., 4:52-58.
  • Reymond, P., Farmer, E.E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol., 1:404-411.
  • Robatzek, S., Bittel, P., Chinchilla, D., Kochner, P., Felix, G., Shiu, S.H., Boller, T. 2007. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant. Mol. Biol., 64:539-547.
  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H., Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell, 8:1809-1819.
  • Saito, S., Yamamoto-Katou, A., Yoshioka, H. 2006. Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiology, 47:689–697.
  • Staskawicz, B.J., Mudgett, M.B., Dangl, J.L., Galan, J.E. 2001. Common and contrasting themes of plant and animal diseases. Science, 292:2285-2289.
  • Sun, W., Dunning, F.M., Pfund, C. 2006. Within-species flagellin polymorphism in Xanthomonas campestris pv. campestris and its impact on elicitation of Arabidopsis Flagellin Sensing2-dependent defenses. Plant Cell, 18: 764–779.
  • Thomma, B.P., Penninckx, I.A., Broekaert, W.F., Cammue, B.P. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13:63-68.
  • Von Bodman, S.B., Bauer, W.D., Coplin, D.L. 2003. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 41, 455–482.
  • Zeidler, D., Zähringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., Durner, J. 2004. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl Acad. Sci. USA, 101, 15811–15816.
  • Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428:764-767.
  • Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology, 20:10–16.
Anadolu Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-8750
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniv. Ziraat Fak.
Sayıdaki Diğer Makaleler

RED CHIEF ELMA ÇEŞİDİNDE AMİNOETHOXYVİNYLGLYCİNE’NİN (AVG) VE NAFTALEN ASETİK ASİT’İN (NAA) HASAT ÖNÜ DÖKÜM VE MEYVE KALİTESİ ÜZERİNE ETKİSİ

Burhan ÖZTÜRK, Yakup ÖZKAN, Kenan YILDIZ, Çetin ÇEKİÇ, Kemal KILIÇ

GELECEK SAYILARDA YAYINLANMAK ÜZERE KABUL EDİLMİŞ MAKALELER

Forthcoming Research AND REVİEWS (IN PRESS)

Bakteriyel patojenlere karşı bitkilerdeki dayanıklılık mekanizmaları

Hasan Murat AKSOY, Armağan ÖZ

Arazi topografyasına bağlı olarak bazı sebzelerde no3- ve no2- kapsamının değişimi

Ayhan HORUZ, Ahmet KORKMAZ, Çetin Devrim YILDIRIM

Bazı meyve ağaçlarının mekanik hasadında kullanılan silkeleyiciler ve farklı silkeleme yöntemlerinin incelenmesi

Taner YILDIZ

Possibilities of reducing herbicide use in weed control in sugar beet production

Rıza KAYA

ANKARA EKOLOJİK KOŞULLARINDA FARKLI AYÇİÇEĞİ (Helianthus annuus L.) ÇEŞİTLERİNİN VERİM PERFORMASLARININ BELİRLENMESİ

Duran KATAR, Suay BAYRAMİN, Fatma KAYAÇETİN, Yusuf ARSLAN

BAKTERİYEL PATOJENLERE KARŞI BİTKİLERDEKİ DAYANIKLILIK MEKANİZMALARI

Hasan Murat AKSOY, Armağan ÖZ

Ankara ekolojik koşullarında farklı ayçiçeği (Helianthus annuus L.) çeşitlerinin verim performaslarının belirlenmesi

Duran KATAR, Yusuf ARSLAN, Fatma KAYAÇETİN, Suay BAYRAMİN

TÜRKİYE’DE DEĞİŞİK EKOLOJİLERDE RHİZOMANİA HASTALIĞINA DAYANIKLI VE DUYARLI ŞEKER PANCARI ÇEŞİTLERİNİN VERİM VE KALİTE PERFORMANSI

Rıza KAYA, Songül GÜREL