Covid-19 ile Mücadelede Akciğer ve Bağırsak Mikrobiyotalarının Rolü

İlk defa 2019 Aralık ayında Çin’in Wuhan şehrinde görülen ve kısa sürede bir salgına neden olan COVID-19 11 Mart 2020'de Dünya Sağlık Örgütü (WHO) tarafından küresel salgın olarak ilan edilmiştir. Hastalık özellikle bağışıklık sistemi problemleri başta olmak üzere diyabet, kalp hastalıkları gibi diğer kronik hastalıkları olan kişilerde ciddi bir klinik seyir göstermektedir.  Virüslere karşı savunmada immün sistemin fonksiyonları ve modülasyonu son derece önemlidir. Birçok araştırmanın sonuçlarına göre, doğal immün sistemi güçlendirmenin yollarından biri de bağırsak mikrobiyotasını dengelemektir. Son zamanlarda yapılan çalışmalar akciğer mikrobiyotası ile bağırsak mikrobiyotasının ilişkili olduğunu ve mikrobiyota dengesinin viral solunum yolu hastalıklarının önlenmesi ve savunmasında önemli olabileceğini göstermektedir. COVID-19’a karşı etkin bir tedavi ve aşı geliştirmek için tüm Dünya’da bilim adamları yoğun olarak çalışmaktadır, ancak henüz kesin tedavisi ya da aşısı bulunamamıştır. Covid-19 hastalığı sürecinde fonksiyonel tıp bakış açısıyla fizyopatolojik mekanizmalara yönelik geliştirilecek yeni profilaktik yaklaşımlar ve tedavi protokollerine ihtiyaç vardır. Bağırsak ve akciğer mikrobiyotaların düzenlenmesinin immün sistemi güçlendirerek korunmada önemli olabileceği, yanı sıra tedavi protokollerinde bir tedavi hedefi olarak yer alabileceğini ileri sürülmektedir. COVID-19 salgını, sağlıklı yaşam, sağlığın korunması, güçlendirme ve bağışıklık sistemi modülasyonu gibi profilaktik yaklaşımların önemini bir kez daha göstermiştir. Mikrobiyota kaynaklarının nasıl elde edilip kullanılacağı, mikrobiyota düzenleyici-destekleyici ürünlerin uygulamasının standardizasyonu ve beslenmenin düzenlenmesinin tedavideki rolü gibi pek çok konuda ileri araştırmalara ihtiyaç vardır.

The Role of Lung and Gut Microbiota in The Combat Against COVID-19

COVID-19 initially seen in Wuhan China in December 2019 became an epidemic very rapidly and was declared as a pandemic by the World Health Organization (WHO) on March 11, 2020. The disease presents as a serious clinical course in people with other chronic diseases such as diabetes, heart diseases, especially immune system problems. Functions and modulation of the immune system are extremely important in defense against viruses. According to the results of multiple types of research, one of the methods to boost the innate immune system is to balance gut microbiota. Recent studies have shown that lung microbiota and gut microbiota are interrelated and microbiota balance may be important in the prevention of and defense against viral airway diseases. Scientists make great effort worldwide to develop an effective treatment or vaccine against COVID-19, but no cure or vaccine for COVID-19 has been found yet. For COVID-19 disease innovative prophylactic approaches and treatment protocols based on functional medicine perspective and directed towards pathophysiological mechanisms are needed.  It’s assumed that regulation of gut and lung microbiota may be important in the prevention of the disease by boosting the immune system and also may be included in treatment protocols as a therapeutic target.  COVID-19 pandemic has shown once more the importance of preventive approaches like wellness, maintenance of healthy living, immune system boosting, and modulation. Further advanced researches are needed on subjects such as provision and use of microbiota sources, standardization of administration of microbiota regulating-supplementing products, and role of diet regulation in the treatment.   

___

  • 1. Fauci A. S., Lane H.C., Redfield R.R. (2020). Covid-19 - Navigating the uncharted N engl j med 382;13. DOI: 10.1056/NEJMe2002387
  • 2. Murphy, R. (2020). Coronavirus, Homeopathy and Pneumonia, Centre for Homeopathic Education London, UK. https://www.cheonline.co.uk/Coronavirus
  • 3. Barnard, D.L., Kumaki Y., et all. (2011). Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol. 6(5): 615–631. doi:10.2217/fvl.11.33.
  • 4. Barnard, L., Kumaki.İ, (2011). Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy, Future Virol. 6(5): 615–631. doi: 10.2217/fvl.11.33
  • 5. Lai, C.C., Shih, T.P. and Ko, W.C. et al. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents 55. 105924 https://doi.org/10.1016/j.ijantimicag.2020.105924
  • 6. Wujtewicz, M.A., Sommer, A.D., Aszkielowitcz A., Zdanowski, Z., et al. (2020) COVID-19 What should anaethesiologists and intensivists know about it? Anaesthesiol Intensive Ther. 52 (1). DOI: https://doi.org/10.5114/ait.2020.93756
  • 7. Liu, W., Li, H. et al. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism, https://chemrxiv.org/articles/COVID-19 Disease ORF8 and Surface_ Glycoprotein Inhibit Heme Metabolism by Binding to Porphyrin/1193817350.
  • 8. TÜBA-Mikrobiyota ve insan sağlığı sempozyumu (10 Nisan 2017) Raporu: Türkiye Bilimler Akademisi Yayınları. TÜBA Raporları No: 24. ISBN: 978-9944-252-96-6
  • 9. Wu, C., Yang, Z., Song, C., Lİang, C., Li, H., Chen, W., Liu, W., Xie, Q.. (2018). Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific pathogen-free chickens. Poultry Science 97:3837-3846. doi: 10.3382/ps/pey268.
  • 10. Purchiaroni, F., Tortora, A., Gabrielli M., Bertuccı, F., Gigante, G., Ianiro, G., Ojetti, V., Scarpellini, E., Gasbarrini, A. The role of intestinal microbiota and the immune system. European Review for Medical and Pharmacological Sciences; 2013; 17: 323-333 https://www.europeanreview.org/wp/wp-content/uploads/323-333.pdf
  • 11. Cianci, R., Pagliari, D., Piccirillo, C.A., Fritz, J.H. and Gambass, G. The Microbiota and Immune System Crosstalk in Health and Disease. Hindawi Mediators of Inflammation, Volume 2018, Article ID 2912539, https://doi.org/10.1155/2018/2912539
  • 12. Lazar, V., Ditu, L. M., Pircalabioru, G. G., Gheorghe, I., Curutiu, C., Holban, A. M., Picu, A., Petcu, L., & Chifiriuc, M. C. (2018). Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Frontiers in immunology, 9, 1830. https://doi.org/10.3389/fimmu.2018.01830
  • 13. Meazzi, S., Stranieria, A., Lauzia,S., Bonsembiantec, F., Ferroc, S., Paltrinieria,S., Giordanoa, A. (2019) Feline gut microbiota composition in association with feline coronavirus infection: A pilot study. Research in Veterinary Science. 125: 272–278. https://doi.org/10.1016/j.rvsc.2019.07.003
  • 14. Gleeson K, Eggli DF, Maxwell SL. (1997). Quantitative aspiration during sleep in normal subjects. Chest. 111:1266-72. doi: 10.1378/chest.111.5.1266
  • 15. Yatsunenko T, Rey FE, Manary MJ, et all. (2012). Human gut microbiome viewedacross age and geography. Nature.
  • 16. Dickson RP, Erb-Downward JR, Freeman CM, et al. (2017). Bacterial topography of the healthy human lower respiratory tract. MBiol. 14;8(1). doi: 10.1128/mBio.02287-16.
  • 17. Segal LN, Blaser MJ. A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc. (2014) 11 (Suppl. 1):S21–7. https://doi.org/10.1513/AnnalsATS.201306-189MG
  • 18. Sommariva, M., Le Noci, V., Bianchi, F. et al. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell. Mol. Life Sci. (2020). https://doi.org/10.1007/s00018-020-03452-8
  • 19. Shen, Z., Xiao, Y., Kang, L., Ma, W., Leisenh, S. et all. (2020). Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients. Published by Oxford University Press for the Infectious Diseases Society of America. e-mail: journals.permissions@oup.com.
  • 20. Hn, M., Rajput, C., Ishikawa, T., Jarman, C.R., Lee, J., Hershenson, M.B. (2018). Small animal models of respiratory viral infection related to asthma, Viruses. 10, 682. https:doi:10.3390/v10120682
  • 21. Mukherjeea, S., Hanidziarb, D. (2018). More of the Gut in the Lung: How Two Microbiomes Meet in ARDS. Yale journal of biology and medicine 91 pp.143-149.
  • 22. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ,de Boer JD, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut. (2016) 65:575–83. https://doi.org/10.3389/fmicb.2018.02147
  • 23. Nicholson,J; Holmes,E;Kinross,J: Burcelin,J; Gibson,G; Wei Jia, Pettersson,S. (2012) Host-Gut Microbiota,Metabolic Interactions; Science. 8;336(6086):1262-7. doi: 10.1126/science.1223813
  • 24. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. (2011) 3:858–76. doi: 10.3390/nu3100858.
  • 25. Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. (2016) 20:202–14. doi 2: 10.1016/j.chom.2016.07.001.
  • 26. Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The anti-inflammatory effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-stimulated endothelial cells via activation of GPR41/43 and inhibition of HDACs. Front Pharmacol. (2018) 9:533. doi: 10.3389/fphar.2018.00533.
  • 27. Anand, S., Mande, S. (2018). Diet, Microbiota and Gut-Lung Connection; Front. Microbiol.19 September. Front. Microbiol. | https://doi.org/10.3389/fmicb.2018.02147 28. Mukherjeea,S., Hanidziarb, D. et al. (2018). More of the Gut in the Lung: How Two Microbiomes Meet in ARDS. Yale journal of biology and medicine 91 pp.143-149.
  • 29. Vinolo MA, Rodrigues HG, Nachbar RT, et all. (2011). Regulation of inflammation by short chain fatty acids. Nutrients. 3:858-76. doi: 10.3390/nu3100858.
  • 30. Guo, Y.R., Cao, Q.D., Hong, Z.S., Tan, Y.Y., Chen, S.D. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status Military Medical Research (2020) 7:11 https://doi.org/10.1186/s40779-020-00240-0
  • 31. Perlot, T., Penninger. J.M. (2013). ACE2-From the renin angiotensin system to gut microbiota and Malnutrition. Microbes and Infection 15 (2013) 866e873. http://dx.doi.org/10.1016/j.micinf.2013.08.003
  • 32. Cole-Jeffrey, C. T., Liu, M., Katovich, M. J., Raizada, M. K., & Shenoy, V. (2015). ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. Journal of cardiovascular pharmacology, 66(6), 540–550. https://doi.org/10.1097/FJC.0000000000000307
  • 33. Lu, C. C., Ma, K. L., Ruan, X. Z., & Liu, B. C. (2018). Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. International journal of medical sciences, 15(8), 816–822. https://doi.org/10.7150/ijms.25543
  • 34. Zhejiang Da Xue Xue Bao Yi Xue Ban. (2020 Feb). Management of corona virus disease-19 (COVID-19). 21;49(1):0 PMID:32096367
  • 35. Hindson, J., COVID-19: Faecal-oral transmission? Nature Reviews Gastroenterology & Hepatology (25 March 2020) https://doi.org/10.1038/s41575-020-0295-7