Asendan aort dilatasyonunda oksidatif stres ile ilişkili belirteçlerin rolü: malondialdehit ve paraoksonaz-1 aktivitesi

Amaç: Bu çalışmada, oksidatif stres belirteci malondialdehit ve antioksidan enzim paraoksonaz-1 aktivitesi ile asendan aort dilatasyonu olan hastalarda oksidatif ve antioksidatif durum değerlendirildi.Yöntem: Bu kesitsel çalışmaya Ağustos 2020-Aralık 2020 tarihleri arasında asendan aort dilatasyonu olan toplam 56 ardışık hasta (26 erkek, 30 kadın; ort. yaş: 55.3±8.6 yıl; dağılım, 31-67 yıl) ve aort çapı normal olan, yaş ve cinsiyet açısından eşleştirilmiş 33 kontrol (13 erkek, 20 kadın; ort. yaş: 54.5±10.5 yıl; dağılım, 32-67 yıl) dahil edildi. Hastaların tümü transtorasik ekokardiyografi ile değerlendirildi. Paraoksonaz-1 aktivitesi spektrofotometre ile manuel olarak ölçüldü. Malondialdehit, tiyobarbitürik asit testi ile ölçüldü. Asendan aort dilatasyonunun malondialdehit ve paraoksonaz-1 aktivitesi ile olan ilişkisini tespit etmek için korelasyon analizleri yapıldı.Bulgular: Ortalama malondialdehit düzeyleri, kontrol grubuna kıyasla, hasta grubunda anlamlı düzeyde daha yüksek idi (sırasıyla 1.7±0.3 μmoL/mL’ye kıyasla 2.5±1.9 μmoL/mL; p<0.001). Ortalama paraoksonaz-1 aktivitesi, hasta grubunda anlamlı düzeyde daha düşük idi (sırasıyla 30±17.6 U/mL’ye kıyasla 18.5±12.9 U/mL; p<0.002). Serum malondialdehit düzeyleri ve asendan aort çapı arasında pozitif, anlamlı bir ilişki saptandı (r=0.293, p=0.009). Serum paraoksonaz-1 aktivitesi ve asendan aort çapı arasında negatif, anlamlı bir ilişki saptandı (r=-0.364, p=0.001). Malondialdehit düzeyleri ve paraoksonaz-1 aktivitesi, asendan aort dilatasyonunun bağımsız ön gördürücüleri idi.Sonuç: Çalışma sonuçlarımız, lipid peroksidasyonunu gösteren artmış malondialdehit düzeylerinin ve bozulmuş antioksidan savunmasını gösteren azalmış paraoksonaz-1 aktivitesinin, asendan aort dilatasyonunun patofizyolojisinde rol oynayabileceği görüşünü desteklemektedir.

The role of oxidative stress-related biomarkers in ascending aortic dilatation: malondialdehyde and paraoxonase-1 activity

Aim: This study aimed to evaluate the antioxidative and oxidative status of patients with ascending aortic dilatation using malondialdehyde, an oxidative stress marker, and paraoxonase-1 activity, an antioxidant enzyme.Methods: This cross-sectional study was conducted between August and December 2020. It included 56 consecutive patients (mean age 55.3 ± 8.6 years; range 31 to 67 years; 26 males, 30 females) with ascending aortic dilatation and 33 sex-and age-matched controls (mean age 54.5 ± 10.5 years; range 32 to 67 years; 13 males, 20 females) with normal aortic diameters. All participants were evaluated using transthoracic echocardiography. Malondialdehyde was analyzed using the thiobarbituric acid assay. Paraoxonase-1 activity was measured manually using a spectrophotometer. The relation of ascending aortic dilatation with malondialdehyde levels and paraoxonase-1 activity was identified with correlation analyses.Results: The patient group had significantly higher mean malondialdehyde than the control group (2.5 ± 1.9 μmoL/mL and 1.7 ± 0.3 μmoL/mL, respectively; p < 0.001). The patient group had significantly lower mean activity of paraoxonase-1 than the control group (18.5 ± 12.9 U/mL vs.30 ± 17.6 U/mL, respectively; p < 0.002). Serum malondialdehyde was negatively correlated with ascending aortic diameter (r = 0.293, p = 0.009). A significant negative correlation was found between the activity of serum paraoxonase-1 and ascending aortic diameter (r = -0.364, p = 0.001). Malondialdehyde levels and paraoxonase-1 activity were independent predictors of ascending aortic dilatation.Conclusion: The results are in line with the notion that increased malondialdehyde levels indicate lipid peroxidation, and decreased paraoxonase-1 activity indicates impaired antioxidant defense. Using them may help protect against the pathophysiology of ascending aortic dilatation.

___

  • Ramanath VS, Oh JK, Sundt TM 3rd, Eagle KA. Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin Proc. 2009;84:465-81.
  • Demir B, Caglar IM, Tureli Oktay H, Ozde C, Aciksari G, Ciftci S, et al. Elevated serum gamma-glutamyltransferase levels in patients with dilated ascending aorta. Anadolu Kardiyol Derg. 2014;14(2):106-14.
  • Erdogan M, Polat M, Celik MC, Ozturk S, Batug S, Ozbebek YE, et al. Oxidative stress parameters in patients with ascending aortic dilatation. Turk J Med Sci. 2020;50:1323-9.
  • Karakaya O, Barutcu I, Esen AM, Dogan S, Saglam M ,Karapınar H, et al. Relationship between circulating plasma matrix metalloproteinase-9 (Gelatinase-B) concentration and aortic root dilatation. American Journal of Hypertension. 2006;19(4):361-5.
  • Cozijnsen L, Braam RL, Waalewijn RA, Schepens MA, Loeys BL, van Oosterhout MF, et al. What is new in dilatation of the ascending aorta? Review of current literature and practical advice for the cardiologist. Circulation. 2011;123:924-8.
  • Galis ZS, Asanuma K, Godin D, Meng X. N-acetyl-cysteine decreases the matrix- degrading capacity of macrophage-derived foam cells: new target for antioxidant therapy? Circulation. 1998;97:2445-53.
  • Sies H. Oxidative stress: Oxidants and antioxidants. Exp Physiol. 1997;82:291-5.
  • Knight JA, Pieper RK, Mc Clellan L. Specificity of the thiobarbituric acid reaction: its use in studies of lipid peroxidation. Clin Chem. 1988;34:2433-8.
  • Mackness MI, Mackness B, Durrington PN, Connelly PW, Hegele RA. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol. 1996;7:69-76.
  • Schrader C, Ernst IM, Sinnecker H, Soukup ST , Kulling SE ,Rimbach G. Genistein as a potential inducer of the anti-atherogenic enzyme paraoxonase-1: studies in cultured hepatocytes in vitro and in rat liver in vivo. J Cell Mol Med. 2012;16(10):2331-41.
  • Ayub A, Mackness MI, Arrol S, Mackness B, Patel J,Durrington PN. Serum paraoxonase after myocardial infarction. Arterioscler, Thromb, Vasc Biol. 1999;19:330– 5.
  • Mackness MI, Harty D, Bhatnagar D, Winocour PH. Arrol S, Ishola M, et al. Serum paraoxonase activity in familial hypercholesterolaemia and insulin dependent diabetes mellitus. Atherosclerosis. 1991;86:193–9.
  • Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.
  • Goldstein SA, Evangelista A, Abbara S, Arai A, Asch FM, Badano LP, et al. Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging: endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2015;28(2):119-82.
  • Hassel wander O, Savage DA, McMaster D, Loughrey CM, McNamee PT, Middleton D, et al. Paraoxonase polymorphism is not associated with cardiovascular risk in renal transplants recipients. Kidney Int. 1999;56:289–98.
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10.
  • Phillippi JA, Klyachko EA, Kenny JP, Eskay MA, Gorman RC, Gleason TG. Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients. Circulation. 2009;119:2498–506.
  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801.
  • Branchetti E, Poggio P, Sainger R, Shang E, Grau JB, Jackson BM et al. Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm. Cardiovascular Research. 2013;100:316–24.
  • Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41:1819-28.
  • Fruhwirth GO, Moumtzi A, Loidl A, Ingolic E, Hermetter A. The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta. 2006;1761:1060-9.
  • Horke S, Witte I, Wilgenbus P, Krüger M, Strand D, Förstermann U. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation. 2007;115(15):2055–64.
  • Wang HH, Hsieh HL, Wu CY, Yang CM. Oxidized lowdensity lipoprotein-induced matrix metalloproteinase-9 expression via PKC-delta/p42/p44 MAPK/Elk-1 cascade in brain astrocytes. Neurotox Res. 2010;17(1):50-65.
  • Deakin S, Moren X, James RW. Very low density lipoproteins provide a vector for secretion of paraoxonase-1 from cells. Atherosclerosis. 2005;179:17–25.
  • Fan J, Li X, Zhong L, Tong H, Di J, Liu F, et al, MCP-1, ICAM-1 and VCAM-1 are present in early aneurysmal dilatation in experimental rats. Folia Histochem Cytobiol. 2010;48(3):455-61.
  • He R, Guo DC, Sun W, Papke CL, Duraisamy S, Estrera AL et al, Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms. J Thorac Cardiovasc Surg. 2008;136:922-9.
  • Besler C, Lüscher TF, Landmesser U. Molecular mechanisms of vascular effects of High-density lipoprotein: alterations in cardiovascular disease. EMBO Mol Med. 2012;4(4):251-68.
Anadolu Kliniği Tıp Bilimleri Dergisi-Cover
  • ISSN: 2149-5254
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1933
  • Yayıncı: Hayat Sağlık ve Sosyal Hizmetler Vakfı