Kök bakterileri tarafından konukçu bitkide hastalıklara karşı sistemik dayanıklılığın uyarılması

Bitkiler patojen saldırılarına karşı, spesifik bir biyotik uyarıcının tetiklemesiyle aktive olabilen savunma mekanizmalarına sahiptir. Non-patojenik kök bakterilerinin spesifik strainleri bitkilerde Uyarılmış Sistemik Dayanıklılık (ISR) adı verilen ve fenotipik olarak patojen odaklı sistemik uyarılmış dayanıklılıkla (SAR) benzeşen bir dayanıklılığın ortaya çıkmasını sağlarlar. ISR pek çok fungal, bakteriyel ve viral etmene karşı Arabidopsis'te ve çeşitli konukçu bitkilerde denenmiş ve etkili olduğu saptanmıştır. SAR 'in aksine kök bakterisi odaklı ISR, salisilik asit birikiminden ve hastalık oluşumu ile ilgili proteinlerin gen aktivasyonundan bağımsızdır. ISR jasmonik asit ve etilenle bağlantılıdır ve NPR1 geninin aktivasyonuna dayanır. Tarla koşullarında da etkili olan ISR bitki hastalıklarıyla biyolojik savaşta konukçu üzerinden çalışan doğal bir mekanizma olarak ortaya çıkmaktadır.

Induction of systemic resistance by rhizosphere bacteria in host plant against diseases

Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. Specific strains of nonpathogenic rhizobacteria can induce a resistance in plants named rhizobacteria-mediated induced systemic resistance (ISR) that is phenotypically similiar to pathogen-induced systemic resistance (SAR). ISR has been demonstrated and observed to be effective against fungi, bacteria and viruses in Arabidopsis and several host plants. In contrast to SAR this rhizobacteria-mediated ISR response is independent ofsalycilic acid accumulation and pathogenesis-related gene activation. ISR requires responsiveness to jasmonate and ethylene and is dependent on NPR1. ISA is effective under field conditions and offers a natural mechanism for biological control of plant diseases.

___

  • Alstrom, S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomoiiads. J. Gen. Appl. Microbiol. 37: 495-501.
  • Bakker, P. A. H. M., L. X. Ran, CM. J. Pieterse, and L. C. Van Loon. 2003. Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant disöases. Can. J. Plant Pathol. 25: 5-6.
  • Bakker, P. A. H. M., R. Van Peer, andB. Schippers. 1991. Suppressions of soil-borne plant pathogens by fluorescent pseudomads: mechanisms and prospects. In Biotic Interactions and Soil-Borne Diseases, ed. ABR Beemster, GJ Bollen, M Gerlagh, MA Ruissen, B Schippers, et al. Pp. 217-30. Amsterdam: Elsevier.
  • Bora, T. ve H. Özaktan. 1998. Bitki Hastalıklarıyla Biyolojik Savaş, Prizma Matbaası, İzmir; 205s.
  • Chester, K. 1933. Tje problem of acquired physiological immunity in plants. Quart. Rev. Biol. 8: 129-327.
  • Dally, J. M. 1972. The use of near-isogenic lines in biochemical studies of the resistance of wheat tos tem rust. Phytopathology 62: 392-400.
  • Gaffney, T., L. Friedrich, B. Vernooji, D. Negrotto, and G. Nye, et al. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-56.
  • Görlach, J., S. Vorlath, G. Khauf-Beiter, G, Henry, and U. Beckhove. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8: 629-43.
  • Gras, N. A., N. Doke, and J. Kuc. 1979. Supression of the hypersensitive reaction in patato tubers by mycelial components from Phytophtora infestans. Physiol. Plant Pathol. 15: 117-126.
  • Heath, M. C. 1982. The absence of active defence mechanisms in compatible host-Pathogen interactions. In: Wood, R.K.S (Ed.), Active Defence Mechanisms in Plants. Plenum Pres, New York, pp. 143-156.
  • Hoffland, E., C. M. J. Pieterse, and J. A. Van Pelt. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol. Mol. Plant Pathol. 46: 309-320.
  • Hurbert, J. J., and A. W. Helton. 1967. A translocated resistance phenomenon in Prunus domestica induced by initial infection with Cytospora cineta. Phytopathology 57: 1094-1098.
  • Kessmann, H., T. Staub, J. Ligon, M. Oostendorp, and J. Ryals. 1994 Activation of systemic acquired disease resistance. Eur. J. Plant Pathol. 100: 359-69.
  • Kloepper, J. W. 1996. Host specificity in microbe-microbe interactions. Bioscience 46: 406-9.
  • Kloepper, J. W., S. Tuzun, L. Liu, and G. Wei. 1993. Plant growth-promoting rhizobacteria as inducers of systemic disease resistance. In: Lumsden, R.D. and J.L. Waugh (Eds.), Pest Management: Biologically Based Technologies. American Chemical Society Boks, Washington, DC, pp. 156-165.
  • Knoester, M. 1998. The involvement of ethylene in plant disease resistance. PhD thesis, Utrecht Univ.
  • Knoester, M., C. M. J. Pieterse, J. F. Bol, and L. C. Van Loon. 1999 Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene dependent signalling at the site of application. Mol. Plant. Microbe. Interact. 15,720-727.
  • Kuc, J. 1982. Induced immunity to plant disease. Bioscience 32: 854-60.
  • Kuc, J. 1995. Induced systemic resistance-an overview. See Ref. 33, pp. 169-75.
  • Lawton, K., S. L. Potter, S. Uknes, and J. Ryals. 1994. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6: 581-88.
  • Leeman, M., J. A; Van Pelt, F. M. Den Ouden, M. Heinsbroek, P. A. H. M Bakker, and B. Schippers. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharids of Pseudomonas fluorescens. Phytopathology 86: 149-155.
  • Liu, L., J. W. Kloepper, and S. Tuzun. 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85: 695-698.
  • Lynch, J; M. 1976. Products of soil microorganisms in relation to plant growth. Grit Rev. Microbiol. 5: 67-107.
  • Maurhofer, ML, C. Hase, P.Meuwly, J.P. Metraux, and G. Defago. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA gene and polyverdine production. Phytopathology 84: 139-146.
  • Pieterse, C. M. J., J. A. Van Pelt, S. C. M. Van Wees, J. Ton, and K. M. Leon-Kloosterziel, et al. 2001. Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur. J. Plant Pathol 107: 51-61.
  • Press, C. M., M. Wilson, S. Tuzun, and J. W. Kloepper. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determianat of induced systemic resistance in cucumber ör tobacco. Mol. Plant-Microbe Interact. 10: 761-68.
  • Ramamorthy, V., R. Viswanathan, T. Raguchander, V. Prakasam, and R. Samiyappan 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection 20: 1-11.
  • Raupach, G. S., L. Liu, J. P. Murphy, S. Tuzun, and J. W. Kloepper. 1996. Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth promoting rhizobacteria (PGPR). Plant Dis. 80: 891-894.
  • Ross, A. F. 1961. Systemic acquired resistance by localized virus infection in plants. Virology 14: 340-358.
  • Rovira, A. D., and C. B. Davery. 1974. Biology of the rhizosphere. In The Plant Root and its Environment, ed. E. W. Carson, pp. 153-204. Charlottesville: Univ. Pres. VA.
  • Ryals J., K. Weymaiui, L. Lawton, D. Friedrich, and D. Ellis. 1997. The arabidopsis NIM 1 protein shows homology to the mammalian transcription factor inhibitor IKB. Plant Cell 9: 425-39.
  • Ryals, J., U. H. Neuenschwander, M. G. Willits, A. Molina, and H. Y. Steiner, et al. 1996. Systemic acquired resistance. Plant Cell 8: 1809-19.
  • Schippers, B. 1988. Biological control of pathogens with rhizobacteria. Phil. Trans. R. Soc. London B 318: 283-93.
  • Sticher, L., B. Mauch-Mani, and J. P. Metraux. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35: 235-70.
  • Tuzun, S. and.J. Kuc. 1991. Plant immunization: an alternative to pesticides for control of plant plant diseases in gren house and field. In: Bay-Peterson, J. (Ed.), The Biological Control of Plant Diseases. Food and Fertilizer Technology Centre, Taiwan, pp. 30-40.
  • Uknes, S., B. Mauch-Mani, M. Moyçr, S. Potter, and S. Williams, et al. 1992. Acquired resistance in Arabidopsis. Plant Cell 4: 645-56.
  • Van Loon, L. C, and J. F. Antoniw. 1982. Comparison of the effects of salycilic acid and ethepton with virus-induced hypersensitivity and acquired resistence in tobacco. Neth. J. Plant Pathol. 88: 237-56.
  • Van Loon, L. C. 1997. Induced resistance in plants and the role of pathogenesis related proteins. Eur. J. Plant Pathol. 103: 753-65.
  • Van Loon, L.C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic Resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483.
  • Van Peer, R., G. J. Niemann, and B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. Strain WCS 417r. Phytopathology 81: 728-734.
  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van't Westende YAM, Hartog F, Van Loon LC. 1997. Differential Induction of Systemic Resistance in arabidopsis by Biocontrol Bacteria. Mol. Plant-Microbe Interact. 10: 716-724.
  • Ward, E. R., S. J. Uknes, S. C. Williams, S. S. Dincher, and D. L. Wiederhold, et al. 1991, Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085-94.
  • Wasternack, C, and B. Parthier. 1997. Jasmonate signalled plant gene expression. Trends Plant Sci. 2: 302-7.
  • Wei, G., J. W. Kloepper, and S. Tuzun. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth -promoting rhizobacteria. Phytopathology 81: 1508-12.
  • Wei, L., J. W. Kloepper, and S. Tuzun. 1996. Induced systemic resistance to cucumber diseases and increased planth growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86: 221-224.
  • Weller, D. M. 1988. biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Armu. Rev. Phytopathol. 26: 379-407.
  • Xu, Y., P. F. L. Chang, D. Liu, M. L. Narasimhan, and K. G. Raghothama, et al. 1994. Plant defense genes are synergistically induced by rthylene and methyl jasmonate. Plant Cell 6: 1077-85.
  • Zehnder, G. W., C. Yao, J. F. Murphy, E. R. Sikora, and J. W. Kloepper. 2000. Induction of resistance in tomato against cucumber mosaic cucumovims by plant growth-promoting rhizobacteria. BioControl 45: 127-137.
ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi-Cover
  • ISSN: 1300-0225
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1991
  • Yayıncı: Ege Tarımsal Araştırma Enstitüsü