The structure of one weight linear and cyclic codes over Zr 2 × (Z2 + uZ2)s

The structure of one weight linear and cyclic codes over Zr 2 × (Z2 + uZ2)s

Inspired by the Z2Z4-additive codes, linear codes over Zr2 × (Z2 + uZ2)s havebeen introduced by Aydogdu et al. more recently. Although these familyof codes are similar to each other, linear codes over Zr2 × (Z2 + uZ2)s havesome advantages compared to Z2Z4-additive codes. A code is called constantweight (one weight) if all the nonzero codewords have the same weight. It iswell known that constant weight or one weight codes have many importantapplications. In this paper, we study the structure of one weight Z2Z2[u]-linear and cyclic codes. We classify one weight Z2Z2[u]-cyclic codes and alsogive some illustrative examples.

___

  • Hammons, A. R., Kumar, V., Calderbank, A. R., Sloane, N.J.A. and Sol´e, P. (1994). The Z4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory, 40, 301-319.
  • Calderbank, A.R. and Sloane, N.J.A. (1995). Modular and p-adic cyclic codes. Designs, Codes and Cryptog- raphy, 6, 21-35.
  • Greferath, M. and Schmidt, S. E. (1999). Gray isome- tries for finite chain rings. IEEE Trans. Info. Theory, 45(7), 2522-2524.
  • Honold, T. and Landjev, I. (1998). Linear codes over finite chain rings. In Optimal Codes and Related Top- ics, 116-126, Sozopol, Bulgaria.
  • Borges, J., Fern´andez-C´ordoba, C., Pujol, J., Rif`a, J. and Villanueva, M. (2010). Z2Z4-linear codes: Gener- ator Matrices and Duality. Designs, Codes and Cryp- tography, 54(2), 167-179.
  • Aydogdu, I. and Siap, I. (2013). The structure of Z2Z2s−Additive codes: bounds on the minimum distance. Applied Mathematics and Information Sci- ences(AMIS), 7(6), 2271-2278.
  • Aydogdu, I. and Siap, I. (2015). On ZprZps -additive codes. Linear and Multilinear Algebra, , 63(10), 2089- 2102.
  • Abualrub, T., Siap, I. and Aydin, N. (2014). Z2Z4- additive cyclic codes. IEEE Trans. Inf. Theory, 60(3), 1508-1514.
  • Dougherty, S.T., Liu, H. and Yu, L. (2016). One Weight Z2Z4 additive codes. Applicable Algebra in En- gineering, Communication and Computing, 27, 123- 138.
  • Carlet, C. (2000). One-weight Z4-linear codes, In: Buchmann, J., Høholdt, T., Stichtenoth, H., Tapia- Recillas,H. (eds.) Coding Theory, Cryptography and Related Areas. 57-72. Springer, Berlin.
  • Wood, J.A.(2002) The structure of linear codes of con- stant weight. Trans. Am. Math. Soc. 354, 1007-1026.
  • Skachek, V. and Schouhamer Immink, K.A. (2014). Constant weight codes: An approach based on Knuth’s balancing method. IEEE Journal on Selected Areas in Communications, 32(5), 909-918.
  • Telatar, I.E. and Gallager, R.G (1990). Zero error de- cision feedback capacity of discrete memoryless chan- nels. in BILCON-90: Proceedings of 1990 Bilkent In- ternational Conference on New Trends in Communi- cation, Control and Signal Processing, E. Arikan, Ed. Elsevier, 228-233.
  • Dyachkov, A.G. (1984). Random constant compo- sition codes for multiple access channels. Problems Control Inform. Theory/Problemy Upravlen. Teor. In- form., 13(6), 357-369.
  • Ericson, T. and Zinoviev, V. (1995). Spherical codes generated by binary partitions of symmetric point sets. IEEE Trans. Inform. Theory, 41(1), 107-129.
  • King, O.D. (2003). Bounds for DNA codes with con- stant GC-content. Electron. J. Combin., 10(1), Re- search Paper 33, (electronic).
  • Milenkovic, O. and Kashyap, N. (2006). On the design of codes for DNA computing. Ser. Lecture Notes in Computer Science, vol. 3969. Berlin: Springer-Verlag, 100-119.
  • Colbourn, C. J., Kløve, T. and Ling, A. C. H. (2004). Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. In- form. Theory, 50(6), 1289-1291.
  • Abualrub, T. and Siap, I. (2007). Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2. Designs Codes and Cryptography, 42(3), 273-287.
  • Al-Ashker, M. and Hamoudeh, M. (2011). Cyclic codes over Z2 + uZ2 + u2Z2 + · · · + uk−1Z2. Turk. J. Math., 35, 37-749.
  • Dinh, H. Q. (2010). Constacyclic codes of length ps over Fpm + uFpm. Journal of Algebra, 324, 940-950. [22] Bonisoli, A. (1984). Every equidistant linear code is a sequence of dual Ham- ming codes. Ars Combin., 18, 181-186.
  • Aydogdu, I., Abualrub, T. and Siap, I. (2015). On Z2Z2[u]−additive codes. International Journal of Computer Mathematics, 92(9), 1806-1814.
  • Aydogdu, I., Abualrub, T. and Siap, I. (2017). Z2Z2[u]-Cyclic and constacyclic codes. IEEE Trans. Inf. Theory, 63(8), 4883-4893.
  • Van Lint, J.H. (1992). Introduction to Coding Theory. Springer-Verlag, New York.
  • Grassl, M., Code tables: Bounds on the parameters of various types of codes. Online database. Available at http://www.codetables.de/