New travelling wave solutions for fractional regularized long-wave equation and fractional coupled Nizhnik-Novikov-Veselov equation
New travelling wave solutions for fractional regularized long-wave equation and fractional coupled Nizhnik-Novikov-Veselov equation
In this paper, solitary-wave ansatz and the (G′/G)−expansion methods havebeen used to obtain exact solutions of the fractional regularized long-wave(RLW) and coupled Nizhnik-Novikov-Veselov (NNV) equation. As a result,three types of exact analytical solutions such as rational function solutions,trigonometric function solutions, hyperbolic function solutions are formallyderived from these equations. Proposed methods are more powerful and canbe applied to other fractional differential equations arising in mathematicalphysics.
___
- Miller, K. S. and Ross, B. (1993). An Introduction
to the Fractional Calculus and Fractional Differential
Equations, Wiley, New York.
- Podlubny, I. (1999). Fractional Differential Equations,
Academic Press, California.
- Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J.
(2006). Theory and Applications of Fractional Differ-
ential Equations, Elsevier, Amsterdam .
- Song, L., Wang, W. (2013). A new improved Adomian
decomposition method and its application to
fractional differential equations. Applied Mathemati-
cal Modelling. 37 (3) 1590–1598.
- Wang, Q. (2007). Homotopy perturbation method for
fractional KdV equation. Appl. Math. Comput.. 190
1795-802.
- Wu, G.C. and Baleanu, D. (2013). Variational iteration
method for fractional calculus - a universal approach
by Laplace transform. Advances in Difference
Equations. 2013 18.
- Cui, M. (2009). Compact finite difference method for
the fractional diffusion equation. Journal of Compu-
tational Physics. 228 (20) 7792–7804.
- Khan, N.A., Ara, A. and Mahmood, A. (2012).
Numerical solutions of time-fractional Burgers equations:
a comparison between generalized differential
transformation technique and homotopy perturbation
method. Int. J. Num. Meth. Heat & Fl. Flow. 22 (2)
175-193.
- Song, L. and Zhang, H. (2007). Application of homotopy
analysis method to fractional KdV-Burgers-
Kuramoto equation. Phys. Lett. A. 367 88–94.
- El-Ajou, A., Odibat, Z., Momani, S. and Alawneh, A.
(2010). Construction of analytical solutions to fractional
differential equations using homotopy analysis
method. Int. J. Appl. Math. 40 (2) 43-51.
- Tian, S.F. and Zhang, H.Q. (2012). On the integrability
of a generalized variable-coefficient Kadomtsev-
Petviashvili equation. Journal of Physics A: Mathe-
matical and Theoretical. 45, 055203. .
- Tian, S.F. and Zhang, H.Q. (2014). On the integrability
of a generalized variable-coefficient forced
Korteweg-de Vries equation in fluids. Stud. Appl.
Math.132, 212–246.
- Mohyud-Din, S., Yıldırım, A. and Y¨ul¨ukl¨u, E. (2012).
Homotopy analysis method for space- and timefractional
KdV equation, Int. J. Num. Meth. Heat &
Fl. Flow. 22 (7), 928-941.
- Sahoo, S. and Ray, S.S. (2015). Improved fractional
sub-equation method for (3+1)-dimensional generalized
fractional KdV–Zakharov–Kuznetsov equations.
Computers and Mathematics with Applications. 70,
158–166.
- Zhang, S. and Zhang, H.Q. (2011). Fractional subequation
method and its applications to nonlinear
fractional PDEs. Phys. Lett. A. 375, 1069–1073.
- Tian, S.F. (2017). Initial–boundary value problems for
the general coupled nonlinear Schr¨odinger equation
on the interval via the Fokas method. J. Differential
Equations, 262, 506-558.
- Tian, S.F. (2016). The mixed coupled nonlinear
Schr¨odinger equation on the half-line via the Fokas
method. Proc. R. Soc. Lond. A. 472, 20160588.
- Bekir, A., Guner, O. and Unsal, O. (2015). The first
integral method for exact solutions of nonlinear fractional
differential equations, J. Comput. Nonlinear
Dynam. 10(2), 021020-5.
- Baleanu, D., U˘gurlu, Y. and Kilic, B. (2015). Improved
(G′/G)− expansion method for the timefractional
biological population model and Cahn–
Hilliard equation. J. Comput. Nonlinear Dynam. 10
(5) 051016.
- Tu, J.M., Tian, S.F., Xu, M.J., Ma, P.L. and Zhang,
T.T. (2016). On periodic wave solutions with asymptotic
behaviors to a (3+1)-dimensional generalized
B-type Kadomtsev–Petviashvili equation in fluid dynamics.
Comput. & Math. Appl. 72, 2486–2504.
- Bekir, A., Guner, O., Bhrawy, A.H. and Biswas, A.
(2015). Solving nonlinear fractional differential equations
using exp-function and (G′/G)-expansion methods.
Rom. Journ. Phys. 60(3-4), 360-378.
- Bulut, H., Baskonus, H M. and Pandir, Y. (2013).
The modified trial equation method for fractional
wave equation and time fractional generalized Burgers
equation. Abstract and Applied Analysis. 636802.
- Guner, O. and Eser, D. (2014). Exact solutions of the
space time fractional symmetric regularized long wave
equation using different methods. Advances in Math-
ematical Physics. 456804 .
- Zhang, S., Zong Q-A., Liu, D. and Gao, Q. (2010). A
generalized exp-function method for fractional riccati
differential equations. Communications in Fractional
Calculus. 1, 48-51.
- Guner, O., Bekir, A. and Bilgil, H. (2015). A note on
exp-function method combined with complex transform
method applied to fractional differential equations.
Adv. Nonlinear Anal. 4(3), 201–208.
- Kaplan, M., Bekir, A., Akbulut, A. and Aksoy, E.
(2015). The modified simple equation method for nonlinear
fractional differential equations. Rom. Journ.
Phys. 60(9-10), 1374–1383.
- Kaplan, M., Akbulut, A. and Bekir, A. (2016). Solving
space-time fractional differential equations by using
modified simple equation method, Commun. Theor.
Phys. 65(5), 563–568.
- Aksoy, E., Kaplan, M. and Bekir, A. (2016). Exponential
rational function method for space-time fractional
differential equations. Waves in Random and Complex
Media. 26(2), 142-151.
- Guner, O. (2015). Singular and non-topological soliton
solutions for nonlinear fractional differential equations.
Chin. Phys. B. 24(10), 100201.
- Guner, O. and Bekir, A. (2016). Bright and dark soliton
solutions for some nonlinear fractional differential
equations. Chin. Phys. B. 25(3), 030203.
- Tu, J.M., Tian, S.F., Xu, M.J. and Zhang, T.T.
(2016). Quasi-periodic waves and solitary waves to
a generalized KdV-Caudrey-Dodd-Gibbon equation
from fluid dynamics. Taiwanese J. Math. 20, 823-848.
- Tu, J.M., Tian, S.F., Xu, M.J. and Zhang, T.T.
(2016). On Lie symmetries, optimal systems and
explicit solutions to the Kudryashov–Sinelshchikov
equation, Appl. Math. Comput. 275, 345–352.
- Lin, S.D. and Lu, C.H. (2013). Laplace transform for
solving some families of fractional differential equations
and its applications. Advances in Difference
Equations. 137.
- Srivastava, H.M., Golmankhaneh, A.K., Baleanu, D.
and Yang, X.J. (2014). Local fractional Sumudu transform
with application to IVPs on Cantor sets. Abstract
and Applied Analysis. 620529.
- Wang, X.B., Tian, S.F., Xua, M.J. and Zhang T.T.
(2016). On integrability and quasi-periodic wave solutions
to a (3+1)-dimensional generalized KdV-like
model equation. Appl. Math. Comput. 283, 216–233.
- Arnous, A.H. and Mirzazadeh, M. (2015). B¨acklund
transformation of fractional Riccati equation and its
applications to the space–time FDEs. Mathematical
Methods in the Applied Sciences. 38(18), 4673–4678.
- Feng, L.L., Tian, S.F., Wang, X.B. and Zhang,
T.T. (2017). Rogue waves, homoclinic breather waves
and soliton waves for the (2+1)-dimensional B-type
Kadomtsev–Petviashvili equation. Appl. Math. Lett.
65, 90–97.
- Tian, S.F., Zhang, Y.F., Feng, B.L. and Zhang, H.Q.
(2015). On the Lie algebras, generalized symmetries
and Darboux transformations of the fifth-order evolution
equations in shallow water. Chin. Ann. Math.
36B, 543–560.
- Tian, S.F., Wang, Z. and Zhang, H.Q. (2010).
Some types of solutions and generalized binary Darboux
transformation for the mKP equation with selfconsistent
sources. J. Math. Anal. Appl. 366, 646-662.
- Al-Shara, S. (2014). Fractional transformation
method for constructing solitary wave solutions to
some nonlinear fractional partial differential equations.
Applied Mathematical Sciences. 8, 5751-5762.
- Xu, M.J., Tian, S.F., Tu, J.M. and Zhang T.T. (2016).
B¨acklund transformation, infinite conservation laws
and periodic wave solutions to a generalized (2+1)-
dimensional Boussinesq equation. Nonlinear Anal.:
Real World Appl. 31, 388–408.
- Li, Z.B. and He, J. H. (2011). Application of the
fractional complex transform to fractional differential
equations. Nonlinear Sci. Lett. A. 2121-126.
- Caputo, M. (1967). Linear models of dissipation whose
Q is almost frequency independent II, Geophys. J.
Royal Astronom. Soc. 13, 529-539.
- Jumarie, G. (2006). Modified Riemann–Liouville derivative
and fractional Taylor series of nondifferentiable
functions further results. Comput. Math. Appl.
51, 1367–1376.
- Jumarie, G. (2009). Table of some basic fractional
calculus formulae derived from a modified Riemann-
Liouvillie derivative for nondifferentiable functions.
Appl. Maths. Lett.. 22, 378-385.
- He, J H., Elegan, S.K. and Li, Z.B. (2012). Geometrical
explanation of the fractional complex transform
and derivative chain rule for fractional calculus. Phys.
Lett. A. 376, 257–259.
- Biswas, A. (2008). 1-soliton solution of the K(m, n)
equation with generalized evolution. Phys. Lett. A.
372, 4601-4602.
- Triki, H., Wazwaz, A.M. (2009). Bright and dark soliton
solutions for a K(m, n) equation with t-dependent
coefficients. Phys. Lett. A. 373, 2162–2165.
- Bekir, A., Guner, O. (2013). Bright and dark
soliton solutions of the (3+1)-dimensional generalized
Kadomtsev–Petviashvili equation and generalized
Benjamin equation. Pramana J. Phys. 81, 203.
- Triki, H., Milovic, D. and Biswas, A. (2013). Solitary
waves and shock waves of the KdV6 equation. Ocean
Engineering. 73, 119–125.
- Younis, M. and Ali, S. (2015). Bright, dark, and singular
solitons in magneto-electro-elastic circular rod.
Waves in Random and Complex Media. 25(4), 549-
555.
- Bekir, A. and Guner, O. (2013). Topological (dark)
soliton solutions for the Camassa–Holm type equations.
Ocean Engineering. 74, 276–279.
- Abdel-Salam, E.A.B., Hassan, G.F. (2016). Solutions
to class of linear and nonlinear fractional differential
equations. Commun. Theor. Phys.. 65, 127–135.
- Peregrine, D.H. (1966). Calculations of the development
of an undular bore. J. Fluid Mech. 25, 321–330.
- Peregrine, D.H. (1967). Long waves on a beach. J.
Fluid Mech. 27, 815–827.
- Benjamin, T.B., Bona, J.L. and Mahony, J. (1972).
Model equations for waves in nonlinear dispersive systems.
J. Philos. Trans. R. Soc. Lond. 227, 47–78.
- Abdel-Salam, E.A.B., Yousif, E.A. (2013). Solution of
nonlinear space-time fractional differential equations
using the fractional riccati expansion method. Mathe-
matical Problems in Engineering. 846283.
- Esen, A. and Kutluay, S. (2006). Application of a
lumped Galerkin method to the regularized long wave
equation. Appl. Math. Comput. 174, 833–845.
- Dag, I. (2000). Least square quadratic B-spline finite
element method for the regularized long wave equation.
Comp. Meth. Appl. Mech. Eng. 182, 205–215.
- Dag, I. and Ozer, M.N. (2001). Approximation of
RLW equation by least square cubic B-spline finite
element method. Appl. Math. Model. 25, 221–231.
- Saka, B., Dag, I. and Irk, D. (2008). Quintic Bspline
collocation method for numerical solutions of
the RLW equation. Anziam J. 49(3), 389–410.
- Saka, B., Sahin, A., Dag, I. (2011). B-spline collocation
algorithms for numerical solution of the RLW
equation. Numer. Meth. Part. D. E. 27, 581–607.
- Yusufoglu, E. and Bekir, A. (2007). Application of the
variational iteration method to the regularized long
wave equation. Computers and Mathematics with Ap-
plications. 54, 1154–1161.
- Liu, Y. and Yan, L. (2013). Solutions of fractional
Konopelchenko-Dubrovsky and Nizhnik-Novikov-
Veselov equations using a generalized fractional
subequation method. Abstract and Applied Analysis.
839613.
- Hong, T., Wang, Y.Z. and Huo, Y.S. (1998). Bogoliubov
quasiparticles carried by dark solitonic excitations
in nonuniform Bose Einstein condensates. Chin.
Phys. Lett. 15, 550 552.
- Das, G.C. (1997). Explosion of soliton in a multicomponent
plasma. Phys. Plasmas. 4, 2095-2100.
- Lou, S.Y. (1999). A direct perturbation method: Nonlinear
Schrodinger equation with loss. Chin. Phys.
Lett. 16, 659-661.
- Shin, B.C., Darvishi, M.T. and Barati, A. (2009).
Some exact and new solutions of the Nizhnik Novikov
Vesselov equation using the Exp-function method.
Computers and Mathematics with Applications. 58,
2147-2151.
- Deng, C. (2010). New abundant exact solutions for
the (2 + 1)-dimensional generalized Nizhnik–Novikov–
Veselov system. Commun Nonlinear Sci Numer Sim-
ulat. 15, 3349–3357
- Boubir, B., Triki, H. andWazwaz, A.M. (2013). Bright
solitons of the variants of the Novikov–Veselov equation
with constant and variable coefficients. Applied
Mathematical Modelling. 37, 420–431.
- Wang, M.L., Li X. and Zhang, J. (2008). The
(G′/G)-expansion method and travelling wave solutions
of nonlinear evolution equations in mathematical
physics. Phys. Lett. A. 372(4), 417-423.