Some new integral inequalities for Lipschitzian functions
Some new integral inequalities for Lipschitzian functions
This paper is about obtaining some new type of integral inequalities for functionsfrom the Lipschitz class. For this, some new integral inequalities related to thedifferences between the two different types of integral averages for Lipschitzianfunctions are obtained. Moreover, applications for some special means asarithmetic, geometric, logarithmic, ?-logarithmic, harmonic, identric are given.
___
- Hadamard J. (1893). Étude sur les propriétés des
fonctions entiéres et en particulier d’une fonction
considérée par Riemann, J. Math. Pures Appl.,
58 (1893), 171–215
- İşcan, İ. (2014). Hermite-Hadamard type
inequalities for harmonically convex functions,
Hacettepe Journal of Mathematics and Statistics,
Volume 43 (6), 935–942.
- Kilbas, A.A. Srivastava, H.M. and Trujillo, J.
(2006). Theory and applications of fractional
differential equations, Elsevier, Amsterdam.
- Roberts, A.W. and Varberg, D.E. (1973) Convex
Functions. Academic Press, 300pp, New York.
- Dragomir, S.S. Cho, Y.J. and Kim, S.S. (2000).
Inequalities of Hadamard's type for Lipschitzian
mappings and their applications, Journal of
Mathematical Analysis and Applications, vol.
245, no. 2, pp. 489-501.
- Hwang, S.R. Hsu, K.C. and Tseng, K.L. (2013).
Hadamard-type inequalities for Lipschitzian
functions in one and two variables with
applications, Journal of Mathematical Analysis
and Applications, vol. 405, no. 2, 546-554.
- İşcan, İ. (2014). New general integral
inequalities for Lipschitzian functions via
Hadamard fractional integrals, International
Journal of Analysis, volume 2014, Article ID
353924, 8 pages.
- İşcan, İ. (2016). Hadamard-type and Bullen-type
inequalities for Lipschitzian functions via
fractional integrals, Mathematical Sciences and
Applications E-Notes, 4 (1), 77-87.