On Hermite-Hadamard type inequalities for S φ −preinvex functions by using Riemann-Liouville fractional integrals
On Hermite-Hadamard type inequalities for S φ −preinvex functions by using Riemann-Liouville fractional integrals
In this study, we have obtained some Hermite-Hadamard type integral inequal-ities for s φ −preinvex functions. These inequalities are a generalization of someof the results in the literature.
___
- Katugampola, U. N. (2011). New Approach
to a generalized fractional integral. Applied
Mathematics and Computation, 218(3), 860-
865.
- Kilbas, A., Srivastava, H. M. and Trujillo, J.J.
(2006). Theory and applications of fractional
differantial equations. Elsevier B.V., Amster-
dam Netherlands.
- Samko, S. G., Kilbas, A. A. and Marichev,
O. I. (1993). Fractional Integral and Deriva-
tives, Theory and Applications. Gordon and
Breach, Yverdon et alibi.
- Ozdemir, M. E., Yildiz, C. and Kavur-
maci, H. (2015). Fractional integral inequal-
ities for different functions. New Trends in
Mathematical Sciences, 3(2)2, 110-117.
- Sarikaya, M. Z., Set, E., Yaldiz, H. and
Basak, N. (2013). Hermite-Hadamard’s. in-
equalities for fractional integrals and re-
lated fractional inequalities. Mathematical
and Computer Modelling 57, 2403-2407.
- Wang, J., Li, X., Feckan, M. and Zhou, Y.
(2012). Hermite-Hadamard type inequalities
for Riemann-Liouville fractional integrals via
two kinds of convexity. Applicable Analysis,
doi:10.1080/00036811.2012.727986.
- Yıldırım, H. and Kırtay, Z. (2014). Ostrowski
Inequality for Generalized Fractional Integral
and Related Inequalities. Malaya Journal of
Mathematics, 2(3) 322-329.
- Das, S. (2011). Functional Fractional Calcu-
lus. Springer-Verlag, Berlin Heidelberg.
- Sarikaya, M. Z., Dahmani, Z., Kiris, M. and
Ahmad, F. (2016). (k, s)−Riemann-Liouville
fractional integral and applications. Hacettepe
Journal of Mathematics and Statistics, 45(1),
77 – 89.
- Akkurt, A. and Yıldırım, H. (2013). On
Feng Qi type integral inequalities for gener-
alized fractional integrals. International Ana-
tolia Academic Online Journal, Scientific Sci-
ence, 1(2), 22-25.
- Noor, M. A. and Awan, M. U. (2013). Some
Integral inequalities for two kinds of convex-
ities via fractional integrals. Transylvanian
Journal of Mathematics and Mechanics, 5(2),
129-136.
- Cristescu, G. (2004). Hadamard type in-
equalities for φ−convex functions, Annals of
the University of Oradea, Fascicle of Man-
agement and Technological Engineering, CD-
Rom Edition, III (XIII).
- Dragomir, S. S. and Pearce, C. E. M. (2000).
Selected topics on Hermite-Hadamard in-
equalities and applications, Victoria Univer-
sity, Australia.
- Dragomir, S. S., Pećarić, J. and Persson,
L. E. (1995). Some inequalities of Hadamard type. Soochow Journal of Mathematics, 21,
335-341.
- Cristescu, G. (2005). Improved integral in-
equalities for products of convex functions.
Journal of Inequalities in Pure and Applied
Mathematics, 6(2).
- Zhang, T. Y., Ji, A. P. and Qi, F. (2013).
Some inequalities of Hermite-Hadamard type
for s-convex functions with applications to
means, Le Matematiche LXVIII, Fasc. I, 229-
239, doi:10.4418/2013.68.1.17.
- Hanson, M. A. (1981). On sufficiency of the
Kuhn-Tucker conditions. Journal of Mathe-
matical Analysis and Applications, 80(2), 545-
550.
- Noor, M. A., Awan, M. U., Noor, K. I. and
Khan, S. (2015). Hermite–Hadamard type in-
equalities for differentiable hφ-preinvex func-
tions. Arabian Journal of Mathematics, 4, 63-
76.