Fitting intravoxel incoherent motion model to diffusion MR signals of the human breast tissue using particle swarm optimization

Fitting intravoxel incoherent motion model to diffusion MR signals of the human breast tissue using particle swarm optimization

Intravoxel incoherent motion (IVIM) modeling offers the parameters f, D and D *from diffusion MR signals as biomarkers for different lesion types and cancerstages. Challenges in fitting the model to the signals using the availableoptimization algorithms motivate new studies for improved parameter estimations.In this study, one thousand value sets of f, D, D * for human breast tissue areassembled and used to generate five thousand diffusion MR signals consideringnoise-free and noisy situations exhibiting signal-to-noise ratios (SNR) of 20, 40,80 and 160. The estimates of f, D, D * are obtained using Levenberg-Marquardt(LM), trust-region (TR) and particle swarm (PS) algorithms. On average, thealgorithms provide the highest fitting performance for the noise-free signals(R 2adj =1.000) and great fitting performances for the noisy signals with SNR>20(R 2adj >0.988). TR algorithm performs slightly better for SNR=20 (R 2adj =0.947).TR and PS algorithms achieve the highest parameter estimation performance forall the parameters, while LM algorithm reveals the highest performance for f andD only on the noise-free signals (r=1.00). For the noisy signals, performancesincrease with an increase in SNR. All algorithms accomplish poor performancesfor D * (r=0.01-0.20) while TR and PS algorithms perform same for f (r=0.48-0.97)and D (r=0.85-0.99) but remarkably better than LM algorithm for f (r=0.08-0.97)and D (r=0.53-0.99). Overall, TR and PS algorithms demonstrate better butindistinguishable performances. Without requiring any user-given initial value, PSalgorithm may facilitate improved estimation of IVIM parameters of the humanbreast tissue. Further studies are needed to determine its benefit in clinical practice.

___

  • Le Bihan, D. & Lima, M. (2015). Diffusion magnetic resonance imaging: What water tells us about biological tissues. PLoS Biology, 13(7): e1002203. http://doi.org/10.1371/journal.pbio.1002203.
  • Pinker, K., Moy, L., Sutton, E.J., Mann, R.M., Weber, M., Thakur, S.B., Jochelson, M.S., Bago- Horvath, Z., Morris, E.A., Baltzer, P.A. & Helbich, T.H. (2018). Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging. Investigative Radiology. http://doi:10.1097/RLI.0000000000000465.
  • Pasquier, D., Hadj Henni, A., Escande, A., Tresch, E., Reynaert, N., Colot, O., Lartigau, E. & Betrouni, N. (2018). Diffusion weighted MRI as an early predictor of tumor response to hypofractionated stereotactic boost for prostate cancer. Scientific Reports, 8, 10407. http://doi.org/10.1038/s41598- 018-28817-9.
  • Keil, V. C., Mädler, B. , Gielen, G. H., Pintea, B. , Hiththetiya, K. , Gaspranova, A. R., Gieseke, J. , Simon, M. , Schild, H. H. & Hadizadeh, D. R. (2017). Intravoxel incoherent motion MRI in the brain: Impact of the fitting model on perfusion fraction and lesion differentiability. Journal of Magnetic Resonance Imaging, 46(4), 1187-1199.
  • Barbieri, S., Donati, O.F., Froehlich, J.M. & Thoeny, H.C. (2016). Impact of the calculation algorithm on bi-exponential fitting of diffusion-weighted MRI in upper abdominal organs. Magnetic Resonance in Medicine, 75(5), 2175-2184.
  • Marquardt, D.W. (1963). An algorithm for least- squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(1), 431-441.
  • Coleman, T.F. & Li, Y. (1996). An interior, trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization, 6(1), 418- 445.
  • Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, 1942-1945.
  • Devraj Mandal, D., Chatterjee, A. & Maitra, M. (2014). Robust medical image segmentation using particle swarm optimization aided level set based global fitting energy active contour approach. Engineering Applications of Artificial Intelligence, 35(1), 199-214.
  • Kaur, S. & Kaur, M. (2010) Medical image enhancement using particle swarm optimization. Artificial Intelligent Systems and Machine Learning, 2(5), 54-59.
  • Lin, C.-L., Mimori, A. & Chen, Y.-W. (2012). Hybrid particle swarm optimization and its application to multimodal 3D medical image registration. Computational Intelligence and Neuroscience, 561406. http://doi.org/10.1155/2012/561406.
  • Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E. & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401-417.
  • Liu, C., Liang, C., Liu, Z., Zhang, S. & Huang, B. (2013). Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. European Journal of Radiology, 82(12): e782-9. http://doi:10.1016/j.ejrad.2013.08.006.
  • Cho, G. Y., Moy, L., Zhang, J. L., Baete, S., Lattanzi, R., Moccaldi, M. & Sigmund, E.E. (2015). Comparison of Fitting Methods and b-Value Sampling Strategies for Intravoxel Incoherent Motion in Breast Cancer. Magnetic Resonance in Medicine, 74(4), 1077–1085.
  • Harel, O. (2009). The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation. Journal of Applied Statistics, 36(10), 1109-1118.
  • Zhou, T. & Han, D. (2008). A weighted least squares method for scattered data fitting. Journal of Computational and Applied Mathematics, 217(1), 56-63.
  • While, P. T. (2017). A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion‐weighted MRI. Magnetic Resonance in Medicine, 78(6), 2373- 2387.