A novel method for the solution of blasius equation in semi-infinite domains

A novel method for the solution of blasius equation in semi-infinite domains

In this work, we apply the reproducing kernel method for investigating Blasiusequations with two different boundary conditions in semi-infinite domains.Convergence analysis of the reproducing kernel method is given. The numericalapproximations are presented and compared with some other techniques,Keywords: Howarth’s numerical solution and Runge-Kutta Fehlberg method.

___

  • [1] Arqub, O. A., Mohammed A. S., and Momani, S., Application of reproducing kernel method for solving nonlinear Fredholm-Volterra integrodifferential equations. Abstr. Appl. Anal., pages Art. ID 839836, 16, (2012).
  • [2] Adair, D., and Jaeger, M.,. Simulation of tapered rotating beams with centrifugal stiffening using the Adomian decomposition method. Appl. Math. Model., 40(4):3230–3241, (2016).
  • [3] Aghakhani, M., Suhatril, M., Mohammadhassani, M., Daie, M., and Toghroli, A., A simple modification of homotopy perturbation method for the solution of Blasius equation in semi-infinite domains. Math. Probl. Eng., pages Art. ID 671527, 7, (2015).
  • [4] Akg¨ul, A., A new method for approximate solutions of fractional order boundary value problems. Neural Parallel Sci. Comput., 22(1-2):223–237, (2014).
  • [5] Akg¨ul, A., New reproducing kernel functions. Math. Probl. Eng., pages Art. ID 158134, 10, (2015).
  • [6] Akg¨ul, A., Inc, M., and Karatas, E., Reproducing kernel functions for difference equations. Discrete Contin. Dyn. Syst. Ser. S, 8(6):1055–1064, (2015).
  • [7] Akg¨ul, A., Inc, M., Karatas, E., and Baleanu, D., Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Adv. Difference Equ., pages 2015:220, 12, (2015).
  • [8] Aminikhah, H., An analytical approximation for solving nonlinear Blasius equation by NHPM. Numer. Methods Partial Differential Equations, 26(6):1291– 1299, (2010).
  • [9] Asaithambi, A., Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients. J. Comput. Appl. Math., 176(1):203–214, (2005).
  • [10] Bushnaq, S., Maayah, B., Momani, S., and Alsaedi, A., A reproducing kernel Hilbert space method for solving systems of fractional integrodifferential equations. Abstr. Appl. Anal., pages Art. ID 103016, 6, (2014).
  • [11] Bushnaq, S., Momani, S., and Zhou, Y., A reproducing kernel Hilbert space method for solving integrodifferential equations of fractional order. J. Optim. Theory Appl., 156(1):96–105, (2013).
  • [12] Chang, C. W., Chang, J. R. and Liu, C. S., The Liegroup shooting method for solving classical Blasius at-plate problem. CMC Comput. Mater. Continua, 7(3):139–153, (2008).
  • [13] Cui, M., and Lin, Y., Nonlinear numerical analysis in the reproducing kernel space. Nova Science Publishers, Inc., New York, (2009).
  • [14] Datta, B. K., Analytic solution for the Blasius equation. Indian J. Pure Appl. Math., 34(2):237–240, (2003).
  • [15] Ert¨urk, V. S., and Momani, S., Numerical solutions of two forms of Blasius equation on a half-infinite domain. J. Algorithms Comput. Technol., 2(3):359–370, (2008).
  • [16] Fang, T., Liang, W., and Lee, C. F., A new solution branch for the Blasius equation—a shrinking sheet problem. Comput. Math. Appl., 56(12):3088– 3095, (2008).
  • [17] Fardi, M., Ghaziani, R. K., and Ghasemi, M., The Reproducing Kernel Method for Some Variational Problems Depending on Indefinite Integrals. Math. Model. Anal., 21(3):412–429, (2016).
  • [18] Fazio, R., Numerical transformation methods: Blasius problem and its variants. Appl. Math. Comput., 215(4):1513–1521, (2009).
  • [19] Ganji, D. D., Babazadeh, H., Noori, F., Pirouz, M. M., and Janipour, M., An application of homotopy perturbation method for non-linear Blasius equation to boundary layer flow over a at plate. Int. J. Nonlinear Sci., 7(4):399–404, (2009).
  • [20] Geng, F., and Cui, M., Solving singular nonlinear second-order periodic boundary value problems in the reproducing kernel space. Appl. Math. Comput., 192(2):389–398, (2007).
  • [21] Ghaneai, H., and Hosseini, M. M., Solving differentialalgebraic equations through variational iteration method with an auxiliary parameter. Appl. Math. Model., 40(5-6):3991–4001, (2016).
  • [22] Hashemi, M. S., Constructing a new geometric numerical integration method to the nonlinear heat transfer equations. Commun. Nonlinear Sci. Numer. Simul., 22(1-3):990-1001, (2015).
  • [23] Hashemi, M. S., and Abbasbandy, S., A geometric approach for solving Troesch’s problem. Bull. Malays. Math. Sci. Soc., 40(1):97–116, (2017).
  • [24] He, J. H., A simple perturbation approach to Blasius equation. Appl. Math. Comput., 140(2-3):217– 222, (2003).
  • [25] Howarth, L., Laminar boundary layers. In Handbuch der Physik (herausgegeben von S. Fl¨ugge), Bd. 8 1, Strmungsmechanik I (Mitherausgeber C. Truesdell), pages 264 350. Springer-Verlag, Berlin-GottingenHeidelberg, (1959).
  • [26] Inc, M., and Akg¨ul, A., Approximate solutions for MHD squeezing fluid flow by a novel method. Bound. Value Probl., pages 2014:18, 17, (2014).
  • [27] Inc, M., Akg¨ul, A., and Geng, F., Reproducing kernel Hilbert space method for solving Bratu’s problem. Bull. Malays. Math. Sci. Soc., 38(1):271–287, (2015).
  • [28] Kennedy, E. D., Application of a new method of approximation in the solution of ordinary differential equations to the Blasius equation. Trans. ASME Ser. E. J. Appl. Mech., 31:112–114, (1964).
  • [29] Liao, S. J., An explicit, totally analytic approximate solution for Blasius’ viscous flow problems. Internat. J. Non-Linear Mech., 34(4):759–778, (1999).
  • [30] Lin, J., A new approximate iteration solution of Blasius equation. Commun. Nonlinear Sci. Numer. Simul., 4(2):91–99, (1999).
  • [31] Liu, C. C., Numerical study of mixed convection MHD flow in vertical channels using differential transformation method. Appl. Math. Inf. Sci., 9(1L):105–110, (2015).
  • [32] Maayah, B., Bushnaq, S., Momani, S., and Arqub, O. A., Iterative multistep reproducing kernel Hilbert space method for solving strongly nonlinear oscillators. Adv. Math. Phys., pages Art. ID 758195, 7, ( 2014).
  • [33] Marinca, V., and Herianu, N., The optimal homotopy asymptotic method for solving Blasius equation. Appl. Math. Comput., 231:134–139, (2014).
  • [34] Miansari, M. O., Miansari, M. E., Barari, A., and Domairry, G., Analysis of Blasius equation for flatplate flow with infinite boundary value. Int. J. Comput. Methods Eng. Sci. Mech., 11(2):79–84, (2010).
  • [35] Panayotounakos, D. E., Sotiropoulos, N. B., Sotiropoulou, A. B., and Panayotounakou., N. D., Exact analytic solutions of nonlinear boundary value problems in fluid mechanics (Blasius equations). J. Math. Phys., 46(3):033101, 26, (2005).
  • [36] Parand, K., Dehghan, M., and Pirkhedri, A., Sinccollocation method for solving the Blasius equation. Phys. Lett. A, 373(44):4060–4065, (2009).
  • [37] Peker, H. A., Karaolu, O., and Oturan, G.,. The differential transformation method and Pade approximant for a form of Blasius equation. Math. Comput. Appl., 16(2):507–513, (2011).
  • [38] Ranasinghe, A. I., and Majid, F. B., Solution of Blasius equation by decomposition. Appl. Math. Sci. (Ruse), 3(13-16):605–611, (2009).
  • [39] Robin, W., Some remarks on the homotopy-analysis method and series solutions to the Blasius equation. Int. Math. Forum, 8(25-28):1205–1213, (2013).
  • [40] Sajid, M., Abbas, Z., Ali, N., and Javed, T., A hybrid variational iteration method for Blasius equation. Appl. Appl. Math., 10(1):223–229, (2015).
  • [41] Sakar, M. G., Uludag, F., and Erdogan, F., Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method. Appl. Math. Model., 40(13-14):6639–6649, (2016).
  • [42] Shawagfeh, N., Arqub, O. A., and Momani, S., Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J. Comput. Anal. Appl., 16(4):750–762, (2014).
  • [43] Shishkin, G. I., Grid approximation of the solution of the Blasius equation and of its derivatives. Zh. Vychisl. Mat. Mat. Fiz., 41(1):39–56, (2001).
  • [44] Tang, Z. Q., and Geng, F.Z., Fitted reproducing kernel method for singularly perturbed delay initial value problems. Appl. Math. Comput., 284:169–174, (2016).
  • [45] Ullah, I., Khan, H., and Rahim, M. T., Approximation of first grade MHD squeezing fluid flow with slip boundary condition using DTM and OHAM. Math. Probl. Eng., pages Art. ID 816262, 9, (2013).
  • [46] Leal, H. V., Generalized homotopy method for solving nonlinear differential equations. Comput. Appl. Math., 33(1):275–288, (2014).
  • [47] Wazwaz, A. M., The variational iteration method for solving two forms of Blasius equation on a halfinfinite domain. Appl. Math. Comput., 188(1):485– 491, (2007).
  • [48] Xu, M. Q., and Lin, Y. Z., Simplified reproducing kernel method for fractional differential equations with delay. Appl. Math. Lett., 52:156–161, (2016).
  • [49] Yao, B., and Chen, J., A new analytical solution branch for the Blasius equation with a shrinking sheet. Appl. Math. Comput., 215(3):1146–1153, (2009).
  • [50] Yu, L. T., and Chen, C. K., The solution of the Blasius equation by the differential transformation method. Math. Comput. Modelling, 28(1):101–111, (1998).
  • [51] Zhao, Z., Lin, Y. and Niu, J., Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems. Math. Model. Anal., 21(4):466–477, (2016)