Temellendirilmiş Zihinsel Model Teorisi

Gerçekliğe bireylerin yüklediği farklı anlamlar, bilişsel yapılanma farklılıklarını meydana getirmektedir. Eğitim alanında öğrencilerin olgular, kavramlar ya da konular hakkındaki bilişsel yapılanmalarını anlama gayretleri söz konusudur. Zihinsel model teorisi de eğitim alanında öğrencilerin bilişsel yapılanmalarını anlamlandırmada yararlanılan araştırma alanları arasındadır. Bu çalışmada zihinsel model teorisi ve zihinsel model belirleme hakkında yürütülen çalışmalara yönelik analitik bir değerlendirme mevcuttur. Yapılan değerlendirmelerden hareketle de, zihinsel model teorisinin işe koşmadaki eksikliklerini gidereceği düşünülen 'temellendirilmiş zihinsel model teorisi' tanıtımı ve 'temellendirilmiş zihinsel model' tespit etmeyi açıklama bu çalışmanın amacını oluşturmaktadır.

Investigation of Digital Game Addiction Levels of Sedentary and Sports Students*

The interest of people has increased in digital games in parallel with technological developments. This increasing interest on digital games has caused addiction in some people. Addiction in digital games is called a disorder caused by the inability of the person to control the desire to play digital games constantly in daily life. For this reason, this study aims to investigate the digital game addiction levels of sedentary and sports students. For this purpose, the universe of the study consists of sedentary and sports students. The sample group of the study includes 248 sedentary and sports students. Approval was obtained with the 01/02/2022 dated and 55300 numbered ethics committee decision of Amasya University Social and Human Sciences Ethics Committee on the conduct of this study. "Digital game addiction scale for university students" developed by Hazar and Hazar (2019) was used as a data collection tool in the study. The related scale is in 5-point Likert type and consists of 21 items and 3 sub-dimensions. All statistical calculations were made in SPSS 22.0 V statistical package program. As a result of the analysis of the data obtained, it was concluded that the digital game addiction levels of male students were higher than female students. it has also been determined that individuals between the ages of 18 and 21 have higher levels of digital game addiction compared to other individuals. In addition, it was determined that the addiction levels of the participants who used the Internet for more than 6 hours were higher than the other individuals. On the other hand, in the study, no significant difference was found between the digital game addiction levels of the participants in terms of interest in sports, sports branch and learning variable.

___

  • Arslan, A. S., & Arslan, S. (2010). Mathematical Models in Physics: A Study with Prospective Physics Teacher, Scientific Research and Essays, 5 (7), 634-640.
  • Artaud, M. (2004). Contributions from the Anthropological Theory of Didactics. In W. Blum and H.W. Henn (Eds), Pre-Conference Volume of ICMI Study 14: Applications and Modelling in Mathematics Education, Dortmund: Universität Dortmund, pp.17–22.
  • Artigue, M. (2009). Didactical design in mathematics education. In C. Winsløw (Ed.), Nordic research in mathematics education, 7–16, Rotterdam.
  • Bao, L. (1999). Dynamics of student modeling: A theory, algorithms, and application to quantum mechanics (PhD Thesis). University of Maryland.
  • Bruning, R. H., Schraw, G. J. & Norby, M. M. (2014). Bilişsel psikoloji ve öğretim. (Trans Eds: Z. N. Ersözlü, R. Ülker). Ankara: Nobel Yayıncılık.
  • Borges, A. T. ve Gilbert, J. K. (1999). Mental models of electricity, International Journal of Science Education, 21(1), 95-117.
  • Chevallard, Y. (1989). Le concept de rapport au savoir. Rapport personnel, rapport institutionnel, rapport officiel, Actes du séminaire de Didactique des Mathématiques et de l’Informatique, LSD-IMAG, Grenoble, 211–236.
  • Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students preconceptions in phsics, Journal for Research in Science Teaching, 30(10),1241-1257.
  • Gentner, D. & Stevens, A., L. (1983). Mental models. East Sussex: Taylor & Francis.
  • Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2, 115-130.
  • Gilbert, S. (2011). Models-Based Science Teaching: Understanding and Using Mental Models, Virginia: NSTA Press.
  • Gilbert, J. K. Pietrocola, M., Zylbersztajn, A. & Franco, C. (2000). Science and education: Notions of reality, theory and model. J. K. Gilbert ve C. J. Boulter (Eds.), in Developing models in science education, (pp.19-40). Dordrecht: Kluwer Academic Publishers.
  • Glas, E. (2002). Klein’s model of mathematical creativity. Science and Education, 11, 95–104.
  • Gobert, J. D. ve Buckley B. C. (2000). Introduction to Model-Based Teaching and Learning in Science Education, International Journal of Science Education, 22(9), 891-894.
  • Gökdere, M & Çalık, M. (2010). A cross-age study of Turkish students' mental models: An "Atom" concept. Didactica Slovenica-Pedagoska Obzorja, 25(2), 185-199.
  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1–11.
  • Greca, I. M., & Moreira, M. A. (2002), Mental, physical, and mathematical models in the teaching and learning of physics, Science Education, 86,1 106-121.
  • Furlough, C. S., & Gillan, D. J. (2018). Mental Models: Structural Differences and the Role of Experience. Journal of Cognitive Engineering and Decision Making, 12(4), 269-287.
  • Hanke, U. (2008). Realizing Model-Based Instruction - The Model of Model-Based Instruction, In D. Ifenthaler, P. Pirnay-Dummer ve J. M. Spector (Eds.), Understanding Models for Learning and Instruction (pp. 175-186). Springer Science+Business Media, LLC.
  • Harrison, A.G., ve Treagust, D.F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry, Science Education, 84, 352-381.
  • Hubber, P. (2006). Year 12 students’ mental models of the nature of light. Research in Science Education, 36(4), 419–439.
  • Ingham, A. M., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13, 193–202.
  • Itza-Ortiz, S. F., Rebello, S. ve Zollman, D. (2004). Students’ models of Newton’s second law in mechanics and electromagnetism, European Journal of Physics, 25, 81–89.
  • İyibil, Ü. (2010). Farklı Programlarda Öğrenim Gören Öğretmen Adaylarının Temel Astronomi Kavramlarını Anlama Düzeylerinin Ve Ilgili Kavramlara Ait Zihinsel Modellerinin Analizi, Yayınlanmamış Yüksek Lisans Tezi, KTÜ, Trabzon.
  • Johnson-Laird, P. N. (1983). Mental models. Cambridge: Harvard University.
  • Jones, N. A., Ross, H., Lynam, T., Perez, P., & Leitch, A. (2011). Mental models: Interdisciplinary synthesis of theory and methods. Ecology and Society, 16(1), 46.
  • Kurnaz, M. A. ve Sağlam Arslan, A. (2009). Using the Anthropological Theory of Didactics in Physics: Characterization of the Teaching Conditions of Energy Concept and the Personal Relations of freshmen to this Concept, Journal of Turkish Science Education, 6(1), 72-88.
  • Kurnaz, M. A. ve Sağlam Arslan, A. (2010). Praxeological analysis of the teaching conditions of the energy concept, Cypriot Journal of Educational Sciences, 5, 233-242.
  • Kurnaz, M. A. (2011). Enerji konusunda model tabanlı öğrenme yaklaşımına göre tasarlanan öğrenme ortamlarının zihinsel model gelişimine etkisi (Doktora Tezi). Karadeniz Teknik Üniversitesi.
  • Kurnaz, M. A. (2012). FENE 528 Öğrenmeyi ve Bilgiyi Modelleme Dersi. Yayımlanmamış Ders Notları, Kastamonu Üniversitesi Fen bilimleri Enstitüsü, Kastamonu.
  • Kurnaz, M. A. & Değermenci, A. (2012). 7. Sınıf Öğrencilerinin Güneş, Dünya ve Ay İle İlgili Zihinsel Modelleri. İlköğretim Online, 11 (1) , 2-15.
  • Kurnaz, M. A., & Ekşi, C. (2015). An analysis of high school students' mental models of solid friction in physics. Educational Sciences: Theory and Practice, 15(3), 787-795.
  • Moseley, C, Desjean-Perrotta, B. & Utley, J. (2010). The draw an environment test rubric (DAET-R): Exploring pre-service teachers’ mental models of the environment. Environmental Education Research, 16(2), 189-208. Nersessian, N. (1995). Should physicists preach what they practice? Science and Education, 4, 203–226.
  • Sağlam Arslan, A. & Devecioğlu, Y. (2010). Student Teachers Level of Understanding and Model of Understanding about Newton s Laws of Motion. Asia-Pacific Forum on Science Learning and Teaching, 11(1), Article 7.
  • Şengören, S. K. (2010). Turkish Students’ Mental Models Of Light To Explain The Single Slit Diffraction And Double Slit Interference Of Light: A Cross – Sectional Study. Journal of Baltic Science Education, Journal of Baltic Science Education, 9(1), 61-71.
  • Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In A. U. Frank and I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS, Springer-Verlag, Berlin.
  • Vosniadou, S., ve Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood, Cognitive Psychology, 24, 535-585.
  • Vosniadou, S. & Brewer, W. F. (1994). Mental Models of the Day/Night Cycle. Cognitive Science, 18, 123-183.
  • Yüzbaşıoğlu, M. K., (2015). Ses konusuyla ilgili öğrenci zihinsel modellerinin incelenmesi. Yayınlanmamış Yüksek Lisans Tezi, KÜ, Fen Bilimleri Enstitüsü, Kastamonu.
  • Yüzbaşıoğlu, M. K., & Kurnaz, M. A. (2020). Ses hakkında öğrenci zihinsel modellerinin belirlenmesi. Anadolu Üniversitesi Eğitim Fakültesi Dergisi (AUJEF), 4(3), 254-275.
  • Winslow, C. (2005). Research and development of university level teaching: the interaction of didactical and mathematical organisations. For CERME-4.
  • Winslow, C. (2006). Research and development of university level teaching: the interaction of didactical and mathematical organisations. In: M. Bosch (ed.) European Research in Mathematics Education IV. Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education, Barcelona, 1821-1830.