Demiryolu Hatları için Akıllı Teşhis ve Bakım Sistemleri

Son yıllarda yapay zeka (AI), nesnelerin interneti (IoT) ve büyük veri gibi ileri teknolojiler ön plana çıkmaktadır. Bu teknolojiler çeşitli sektörlerde geniş bir kullanım alanına sahiptir. İnsan ve yük taşımacılığının önemli bir parçası olan demiryolu sistemleri, bu yeni teknolojilerin entegrasyonu ile iyileştirilmelidir. Hat arızalarının başarılı bir şekilde tespiti ve bu tespitlere göre yapılan hat bakımları, demiryolu işletmesinin emniyeti için gereklidir. Şu anda, görüntü işleme ve makine öğrenimi yardımıyla örüntü tanıma uygulamaları, otomatik hat denetimleri için yaygın olarak kullanılmaktadır. Ancak demiryolu hatlarının günümüz teknolojisiyle mükemmel bir şekilde entegre olduğunu söylemek mümkün değildir. Bu çalışmada, geleneksel ve akıllı teşhis ve bakım yöntemleri arasındaki farklara yer verilmiştir. İleri teknolojilerin demiryolu hatlarına uygulanmasındaki eksiklikler tespit edilmiş ve daha iyi bir gelişim için gerekli eylemler tartışılmıştır. Son olarak, akıllı sistemlerin kullanımının, yapıların yaşam döngüsü üzerindeki etkileri değerlendirilmiştir.

Smart Diagnosis And Maintenance Systems For Railway Tracks

In recent years, advanced technologies such as artificial intelligence (AI), the internet of things (IoT), and big data came into prominence. These technologies found an extensive area of utilization in various sectors. Railway systems as an important part of the transportation of people and goods should be improved by the integration of novel technologies. Successful detection of track faults and operating maintenance tasks accordingly are essential for the safety of railway operations. Currently, image processing and pattern recognition via machine learning applications are in common use for automated track inspections. However, it is not possible to claim that railway tracks are integrated with current technology perfectly. In this work, differences between the traditional way and the smart way of track inspection and maintenance are presented. Shortcomings of the application of advanced technologies into railway tracks are detected and required actions for further improvements are discussed. Lastly, the effects of the use of smart systems on the life cycle of the structures are evaluated.

___

  • Al Nuaimi, E., Al Neyadi, H., Nader, M., Al– Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, vol. 6, no. 25, 1–15.
  • Andre, L. O. De Melo, Kaewunruen S., Papaelias M., Liedi L.B. Bernucci, Motta R. (2020). Methods to Monitor and Evaluate the Deterioration of Track and Its Components in a Railway In-Service: A Systemic Review. Frontiers in Built Environment, 6, Article 118.
  • APTA. (2017). Ridership report – quarterly and annual totals by mode. Retrieved January 12, 2021 from www.apta.com/resources/statistics/Pages/riders hipreport.aspx.
  • AREMA (American Railway Engineering and Maintenance-of-Way Association). (2016). Manual for railway engineering, Vol. 4, Lanham,MD.
  • Asplund, M. 2016. Wayside condition monitoring technologies for railway systems. PhD thesis. Sweden: Lulea University.
  • Attoh-Okine, N. (2014). Big data challenges in railway engineering. In 2014 IEEE International Conference on Big Data.
  • Baker, T., Al-Dawsari, B., Tawfik, H., Reid, D., Ngoko, Y. (2015). GreeDi: An energy efficient routing algorithm for big data on cloud. Ad Hoc Netw, vol. 35, 83–96.
  • Baker, T., Ngoko, Y., Tolosana-Calasanz, R., Rana, O. F., Randles, M. (2013). Energy Efficient Cloud Computing Environment via Autonomic Meta-Director Framework. Proc. IEEE Int. Conf. Develop. eSyst. Eng. (DeSE), Abu Dhabi, UAE, 198–203.
  • Balci, E. (2019). Overview of Intelligent Personal Assistants, Acta Infologica, 3(1), 22- 33.
  • Bibri, S. E. (2015). The human face of Ambient Intelligence. Cognitive, Emotional, Affective, Behavioral, and Conversational Aspects, Springer–Verlag, Berlin, Heidelberg.
  • Bibri, S. E., Krogstie, J. (2016). On the social shaping dimensions of smart sustainable cities: A study in science, technology, and society. Sustainable Cities and Society, vol. 29, 219– 246.
  • Bibri S. E., Krogstie, J. (2017b). ICT of the new wave of computing for sustainable urban forms: Their big data and context–aware augmented typologies and design concepts. Sustainable Cities and Society, vol. 32, 449– 474.
  • Bibri S. E., Krogstie, J. (2017c). The core enabling technologies of big data analytics and context–aware computing for smart sustainable cities: A Review and synthesis. Journal of big Big Data, vol. 4, no. 38, 1–50.
  • Bibri, S. E., Krogstie, J. (2017a). Smart sustainable cities of the future: an extensive interdisciplinary literature review. Sustainable Cities and Society, vol. 31, 183–212.
  • Castillo-Mingorance, J.M., Sol-Sánchez, M., Moreno-Navarro, F., Rubio-Gámez, M.C. (2020). A Critical Review of Sensors for the Continuous Monitoring of Smart and Sustainable Railway Infrastructures. Sustainability. 12(22):9428.
  • Edwards, J. R., Mechitov, K. A., Barbosa, I.G., de O Lima, A., Spencer, B. F., Tutumluer, E., Dersch, M. S. (2021). A Roadmap for Sustainable Smart Track— Wireless Continuous Monitoring of Railway Track Condition. Sustainability, 13(13), 7456.
  • EN 13848-5:2008+A1:2010 railway applications – track – track geometry quality. (2008). – Part 5: geometric quality levels-Plain line
  • Faghih-Roohi, S., Hajizadeh, S., Nunez, A., Babuska, R., De Schutter, B. (2016). Deep convolutional neural networks for detection of rail surface defects. In Proceedings of International Joint Conference on Neural Networks, 2584-2589.
  • Hayashi, Y., Kojima, T., Tsunashima, H., Marumo, Y. (2006). Real time fault detection of railway vehicle and tracks. In International conference on railway condition monitoring, Birmingham, UK, 20-25.
  • Jamshidi, A., Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., Dollevoet, R., Li, Z., De Schutter, B. (2017). A Big Data Analysis Approach for Rail Failure Risk Assessment. Risk Analysis, 37, 1495-1507.
  • Jamshidi, A., Hajizadeh, S., Su, Z., Naeimi, M., Núñez, A., Dollevoet, R., Schutter, B. De, Li, Z. (2018). A decision support approach for condition-based maintenance of rails based on big data analysis. Transportation Research Part C: Emerging Technologies, 95, 185-206.
  • Jo, O., Kim Y., Kim J. (2018). Internet of Things for Smart Railway: Feasibility and Applications. IEEE Internet of Things Journal, vol. 5, no. 2, 482-490.
  • Johansson, N., Roth, E., Reim, W. (2019). Smart and Sustainable eMaintenance: Capabilities for Digitalization of Maintenance. Sustainability,11(13), 3553.
  • Kaewunruen, S., Lian, Q. (2019). Digital Twin aided Sustainability-based Lifecycle Management for Railway Turnout Systems. Journal of Cleaner Production.
  • Kelly, S. D. T., Suryadevara, N. K., Mukhopadhyay, S. C. (2013). Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sensors J., vol. 13, no. 10, 3846–3853.
  • Kugurakova, V., Talanov, M., Manakhov, N., Ivanov, D. (2015). Anthropomorphic Artificial Social Agent with Simulated Emotions and its Implementation. Procedia Computer Science, 71, 112-118.
  • Kuila, P., P. Jana, P.K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Eng. Appl. Artif. Intell., vol. 33, 127–140.
  • Li, C., Luo, S., Cole, C., Spiryagin, M. (2017). An overview: modern techniques for railway vehicle on-board health monitoring systems. Vehicle System Dynamics, 55(7), 1045-1070.
  • Marschnig, S. (2016). Innovative track access charges. Transportation Research Procedia, 14, 1884-1893.
  • Martinez, B., Montón, M., Prades, J. D. (2015). The power of models: Modeling power consumption for IoT devices. IEEE Sensors J., vol. 15, no. 15, 5777–5789.
  • Mohanty, S. P., Choppali, U., Kougianos, E. (2016). Everything you wanted to know about smart cities: The Internet of things is the backbone. IEEE Consumer Electronics Magazine, 5(3), 60-70.
  • Nakhaee M. C., Hiemstra D., Stoelinga M., Noort M.V. (2019). The Recent Applications of Machine Learning in Rail Track Maintenance: A Survey. Springer Nature Switzerland, RRSRail., 91-105.
  • Neuhold, J., Landgraf, M., Marschnig, S., Veit, P. (2020). Measurement Data-Driven Life-Cycle Management of Railway Track. Transportation Research Record, 2674(11), 685-696.
  • ORR. (2017). Network rail monitor – quarters 3-4 of year 3 of CP5 16-17 (London)
  • Peng, F. (2011). Scheduling of track inspection and maintenance activities in railroad networks. PhD Dissertation, University of Illinois at Urbana-Champaign
  • Santur, Y., Karaköse, M., Akın, E. (2016). Condition Monitoring Approach Using 3D- Modelling of Railway Tracks with Laser Cameras. In International Conference on Advanced Technology & Sciences (ICAT’16), 132-135.
  • Sasidharan, M., Burrow, M. P. N., Ghataora, G. S. (2020). A whole life cycle approach under uncertainty for economically justifiable ballasted railway track maintenance. Research in Transportation Economics, 100815.
  • Snijders, C., Matzat, U., Reips, U.-D. (2012). Big data: Big gaps of knowledge in the field of internet science. International Journal of Internet Science, 7(1), 1-5.
  • Song, B. Y., Zhong, Y., Liu, R. K., Wang, F. T. (2014). Railway Maintenance Analysis Based on Big Data and Condition Classification. Advanced Materials Research, 919-921,1134-1138.
  • Tan, L., Wang, N. (2010). Future internet: The Internet of Things. In 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 5., 376-380.
  • Tokody D., Schuster, G., Papp J. (2015). Study of how to implement an intelligent railway system in Hungary. IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY), 199-204.
  • Van Noortwijk, J. M. (2004). Gamma process model for time-dependent structural reliability analysis. In Numerical Modelling of Discrete Materials in Geotechnical Engineering, Civil Engineering and Earth Sciences: Proceedings of the First International UDEC/3DEC Symposium, Bochum, Germany, 29 September- 1 October 2004 (p. 101). CRC Press.
  • Veit, P. (2007). Track Quality—Luxury or Necessity?. Railway Technical Review—RTR Special, 8-12.
  • Wyman O. (2014). From Green to Sustainable: Developing a Holistic Approach to Sustainable Business Growth. Marsh and McLennan Companies. Oliver Wyman’s Sustainable Center.
  • Yokoyama, A. (2015). Innovative changes for maintenance of railway by using ICT -To Achieve “Smart Maintenance”. Procedia CIRP, 24-29.
  • Zoeteman, A., Dollevoet, R., Li, Z. (2014). Dutch research results on wheel/rail interface management: 2001-2013 and beyond. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 228, 642-651