Farklı Olgunlaşma Aşamalarında Organik Domateslerdeki (Lycopersicon esculentum) Uçucu Bileşenlerin Dağılımı

Bu çalışmada katı faz mikroekstraksiyon tekniği (SPME) kullanılarak, farklı olgunlaşma aşamalarında domateslerdeki ((Lycopersicon esculentum cv. Şereflikoçhisar) uçucu bileşenler belirlenmiştir. Domatesler tarla şartları altında organik olarak yetiştirilmiştir. Yeşil aşamada 41 uçucu bileşen belirlerken, kırmızı aşamada 47 ve aşırı olgun aşamada 33 uçucu bileşen tespit edilmiştir. Bileşenler (Z)-2-hekzen-1-ol, 1-okten-3-ol, (E)-2-okten-1-ol, (E,Z)-3,6-nonadienal, (Z)-3okten-1-ol, 2,6-dimetil-5-heptenal, 2,6,6-trimetil-1-siklohekzen-1-karboksaldehit, (E,Z)-2,6-nonadienal ve (Z)-4-desenal domateslerde ilk kez belirlenmiştir. Yeşil domateslerde başlıca uçucular metilsalisilat, (E)-2-hekzenal, (Z)-3-hekzen-1ol ve hekzanal sırasıyla %29.4, 23.7, 9.0 ve %5.0'lık oranlarda tespit edilmiştir. Kırmızı aşamada ise başlıca uçucular olan 6-metil-5-hepten-2-on, 2-izobütiltiyazol, 1-hekzenal ve (Z)-4-desenal sırasıyla %17.2, 12.9, 10.2 ve 5.0'lık oranlarda bulunmuştur. Aşırı olgunlaşma dönemindeki domateslerde en bol bulunan bileşenler 4-etilfenol (para etil fenol) ve 4-etil-2-metoksifenol (4-etilguaikol) olmuştur. Uçucu bileşenlerin dağılımı ve konsantrasyonu olgunlaşma aşamasına bağlı olarak belirgin bir şekilde değişim göstermiştir.

Distribution of Volatile Compounds in Organic Tomato (Lycopersicon esculentum) at Different Ripening Stages

In this study, volatile compounds of tomatoes (Lycopersicon esculentum cv. Sereflikochisar) at different ripening stages using solid phase micro extraction technique (SPME) were determined. Tomatoes were organically produced under open-field conditions. Forty one volatile compounds at green stage, 47 at the red stage and 33 at the over ripe stage were determined. Compounds (Z)-2-hexen-1-ol, 1-octen-3-ol, (E)-2-octen-1-ol, (E,Z)-3,6-nonadienol, (Z)-3octen-1-ol, 2,6-dimethyl-5-heptenal, 2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde, (E,Z)- 2-6-nonadienal and (Z)4-decenal were identified for the first time in tomatoes. At the green stage, the main volatiles were found to be methyl salicylate, (E)-2-hexenal, (Z)-3-hexen-1-ol and hexanal in the proportions of 29.4, 23.7, 9.0 and 5.0%, respectively. At red stage, the major volatiles were 6-methyl-5-hepten-2one, 2-isobutylthiazole, 1-hexenol and (Z)-4-decenal in the proportions of 17.2, 12.9, 10.2 and 5%. 4-Ethyl phenol (para ethyl phenol) and 4-ethyl-2-methoxy phenol (4-ethyl guaiacol) were the most plentiful compounds in over-ripe tomato fruits. The distribution and concentrations of volatile compounds were considerably varied depending on the ripening stage.

___

  • [1] Petro, M., Turza, M., 1987. Flavor of tomato and tomato products. Food Rev. Int. 2: 309-351.
  • [2] Buttery, R.G., 1993. Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits, in: Acree, T., Teranishi, R. (Eds.), Flavor Science: Sensible Principles and Techniques. ACS, Washington, D.C., 259-286p.
  • [3] Buttery, R.G., Ling, L.C., 1993. Volatile components of tomato fruit and plant parts: Relationship and biogenesis. In Bioactive Volatile Compounds from Plants, (R. Teranishi, R.G. Buttery and H. Sugisawa, eds.), ACS Symposium Series No. 525. Am. Chem. Soc. Washington, D.C. 23-34p.
  • [4] Alonso, A., Vazquez, A.L., Garcia, M.S., Ruiz, Á.J.J., Carbonell, B.A., 2009. Volatile compounds of traditional and virus-resistant breeding lines of Muchamiel tomatoes. Eur. Food Res. Technol. 230: 315-323.
  • [5] Xu, Y., Barringer, S., 2010. Comparison of tomatillo and tomato volatile compounds in the headspace by selected ion flow tube mass spectrometry (SIFTMS). J. Food Sci. 75: 268-273.
  • [6] Tandon, K.S., Baldwin, E.A., Shewfelt, R.L., 2000. Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum, Mill.) as affected by the medium of evaluation. Postharvest Biol. Technol. 20: 261-268
  • [7] Kader, A.A., 1986. Effects of postharvest handling procedures on tomato quality. Acta Hort. 19: 209- 221.
  • [8] Mathieu, S., Dal Cin, V., Fei, Z., Li, H., Bliss, P., Taylor, M.G., Klee, H.J., Tieman, D.M., 2009. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. J. Exp. Bot. 60: 325-337.
  • [9] Serrano, E., Beltran, J., Hernandez, F., 2009. Application of multiple headspace-solid-phase microextraction followed by gas chromatography- mass spectrometry to quantitative analysis of tomato aroma components. J. Chromatogr. A 1216:127-133.
  • [10] Baldwin, E.A., Nisperos, M.O., Carrideo, M.O., Baker, R., Scott, J.W., 1991. Quantitative analysis of flavor parameters in six Florida tomato cultivars (Lycopersican esculentum, Mill). J. Agric. Food Chem. 39: 1135-1140.
  • [11] Buttery, R.G., 1993. Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits, in: Acree, T., Teranishi, R. (Eds.), Flavor Science: Sensible Principles and Techniques. ACS Washington DC, 259-286p.
  • [12] Maul, F., Sargent, S.A., Sims, C.A., Baldwin, E.A., Balaban, M.O., Huber, D.J., 2000. Tomato flavor and aroma quality as affected by storage temperature. J. Food Sci. 65: 1228-1237.
  • [13] Hayata, Y., Maneerat, C., Kozuka, H., Sakamoto, K., Ozajima, Y., 2002. Flavor volatile analysis of 'house momotaro' tomato fruit extracts at different ripening stages by porapak q column. J. Jpn. Soc. Hort. Sci. 71: 473-479.
  • [14] Ceva, P.M.N., Antunes, P.M.N., Bizzo, H.R., Silva, A.S., Carvalho, C.P.S., Antunes, O.A.C., 2006. Analysis of volatile composition of siriguela (Spondias purpurea L.) by solid phase microextraction (SPME). LWT 39: 436-442.
  • [15] Servili, M., Selvaggini, R., Taticchi, A., Begliomini, A.L., Montedoro, G.F., 2000. Relationships between the volatile compounds evaluated by solid phase microextraction and the thermal treatment of tomato juice: optimization of the blanching parameters. Food Chem. 71: 407- 415.
  • [16] Buescher, R.H., Buescher, R.W., 2001. Production and stability of (E, Z)-2,6-nonadienal, the major flavor. J. Food Sci. 66: 357-362.
  • [17] Reineccius, G., 2006. Flavor Chemistry and Technology. Taylor & Francis, New York, USA, 73- 138p.
  • [18] Blee, E., 1998. Phytooxylipins and plant defense reactions. Prog. Lipid Res. 37: 33-72.
  • [19] Ament, K., Kant, M.R., Sabelis, M.W., Haring, M.A., Schuurink, R.C., 2004. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol (Rockv), 135: 2025-2037.
  • [20] Ament, K., Krasikov, V., Allmann, S., Rep, M., Takken, F.L.W., Schuurink, R.C., 2010. Methyl salicylate production in tomato affects biotic interactions. The Plant. J. 62: 124-134.
  • [21] Chen, G., Hackett, R., Walker, D., Taylor, A., Zhefeng, L., Grierson, D., 2004. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavour compounds. Plant Physiol. (Rockv) 136: 2641-2651.
  • [22] Degenhardt, D.C., Refi, S., Hind, S., Stratmann, J.W., Lincoln D.E., 2010. Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry 7: 2024-2037.
  • [23] Traw, M.B., Bergelson, J., 2003. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in arabidopsis. Plant Physiol. 133: 1367-1375.
  • [24] Tholl, D., 2006. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Bio. 9: 297-304.
  • [25] Mayer, F., Takeoka, G.R., Buttery, R.G., Whitehand, L.C., Naim, M., Rabinowitch, H.D., 2008. Studies on the aroma of five fresh tomato cultivars and the precursors of cis- and trans-4,5- Epoxy-(E)-2-Decenals and methional J. Agric. Food Chem. 56: 3749-3757.
  • [26] Bezman, Y., Mayer, F., Takeoka, G.R., Buttery, R.G., Ben, G., Oliel, G., Rabinowitch, D., Naim, M., 2003. Differential effects of tomato (Lycopersicon esculentum, Mill) matrix on the volatility of important aroma compounds. J. Agric. Food Chem. 51: 722-726.
  • [27] Galliard ,T., Matthew J.A., 1977. Lipoxygenasemediated cleavage of fatty acids to carbonyl fragments in tomato fruits. Phytochemistry 16: 339- 343.
  • [28] Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A., Yosef, E., Zamir, D., Tadmor, Y., 2005. Not just colors-carotenoid degradation as a link between pigmentation and aroma in tomato and watermeleo fruit. Trends Food Sci. Technol. 16: 407-415.
  • [29] Vogel, J.T., Tan, B.C., Mccarty, D.R., Klee, H.J., 2008. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J. Biol. Chem. 283: 11364-11373.
  • [30] Duffey, S., Isman, M., 1981. Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves. Experientia (Basel) 37: 574-576.
  • [31] Frenkel, C., Peters, J.S., Tieman, D.M., Tiznado, M.E., Handa, A.K., 1998. Methanol and ethanol accumulation in ripening. J. Biol. Chem. 253: 4293-4295.
  • [32] Rayne, S., Eggers, N.J., 2007. Quantitative determination of 4-ethylphenol and 4-ethyl-2- methoxyphenol in wines by a stable isotope dilution assay. J. Chrom. A 1167: 195-201.
  • [33] Deibler, K.D., Delwiche, J., 2003. Handbook of flavor characterization sensory analysis chemistry and physicalogy. Taylor & Francis, CRC Press, New York, USA, 384p.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi