MPPT Yöntemi ile İki Aşamalı Üç Fazlı Şebeke Bağlantılı Fotovoltaik Sistem

Bu bildiri, fotovoltaik (FV) sistem tarafından üretilen gücün, üç fazlı alternatif akım (AA) güç şebekesine maksimum verimle iki aşamada kontrol edilerek aktarılmasını incelemektedir. Tasarlanan FV sistemi ile güç kararlılığını sağlamak için kaynaktan yüksek verimle alınan enerjinin maksimum güç noktası izleme (MGNT) yöntemi kullanılarak ağa aktarılması amaçlanmaktadır. Ayrıca ikinci bir kontrol mekanizması ile evirici çıkışındaki akım anlık olarak kontrol edilmekte ve üretilen gücün gerilim değeri sabit tutulmaktadır. Bu kontrol sistemi sayesinde güneş enerjisi, elektrik enerjisi üretiminden elektrik şebekesine aktarılmasına kadar kontrol altında tutulmuştur. Üretilen gücün kalitesinin tahmin edilebilmesi için bilgisayar ortamında yapılan simülasyonlar sonucunda FV sistem çıkışındaki akımın toplam harmonik bozulma (THB) oranı belirlenmiştir. Simüle edilen FV sisteminin, farklı güneş ışınım seviyeleri değerlerine göre, şebekeye aktarılacak gücün voltaj değerini istenilen seviyede sabit tutma eğiliminde olduğu ve maksimum güç üretimi sırasında THB değerinin yüzde üçün altına düşürüldüğü görülmektedir.

Two-Stage Three-Phase Grid-Tied Photovoltaic System with MPPT Method

This paper examines the transfer of the power generated by the photovoltaic (PV) system to the three-phase alternating current (AC) power grid with maximum efficiency by controlling in two stages. With the designed PV system, it is aimed to transfer the energy received from the source with high efficiency to the network by using the maximum power point tracking (MPPT) method in order to ensure power stability. In addition, with a second control mechanism, the current at the output of the inverter is instantly controlled and the voltage value of the generated power is kept constant. Thanks to this control system, solar energy has been kept under control from electrical energy generation to its transfer to the power grid. In order to predict the quality of the generated power, the total harmonic distortion (THD) rate of the current at the output of the PV system was determined as a result of the simulations made in the computer environment. It is seen that the simulated PV system, according to the values of different solar radiation levels, tends to keep the voltage value of the power to be transferred to the grid constant at the desired level and that the THD value has been reduced below three percent at the time of maximum power generation.

___

  • Algarin, C. R., Giraldo, J. T. and Alvarez, O. R., 2017. Fuzzy Logic Based MPPT Controller for a PV System. Energies, 10(12), 2036
  • Bendib, B., Belmili, H. and Krim, F.,2015. A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Reviews, 45, 637-648.
  • Blaabjerg, F., Teodorescu, R. and Timbus, A.V., 2006. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Transactions On Industrial Electronics, 53(3), 1398-1408.
  • Cetin, N. S., Deniz, E. and Basaran, K., 2018. Fotovoltaik Uygulamalar İçin Alternatif Akım Tarafında Maksimum Güç Noktası Takibi. Afyon Kocatepe University Journal of Science and Engineering, 18, 495-503.
  • Durusu, A., Erduman, A., 2020. PV Panellerin Farklı Koşullar Altında I-V Eğrisini Çıkartan ve Maksimum Güç Noktası Takibi Yapan Deney Sisteminin Tasarımı. BEÜ Fen Bilimleri Dergisi, 9(3), 1242-1250.
  • Erfidan, T., Urgun S. and Hekimoglu, B., 2008. Low cost microcontroller based implementation of modulation techniques for three-phase inverter applications. The 14th IEEE Mediterranean Electrotechnical Conference, 541-546.
  • Gelen, A. and Ayık, M.,2019. Gerçek bir PV Sistem için Akü Şarj Devresi Tasarımı. International Journal of Multidisciplinary Studies and Innovative Technologies, 3(2), 196-198.
  • Gui, C., Xie, Y., Lu, X., Wang, Z. and Cheng, L., 2012. The MPPT Control Of Photovoltaic Power System Based On Numerical Control And Optimum Gradient Method. IEEE 7th International Power Electronics and Motion Control Conference.
  • Güler, N. and Irmak E., 2019. MPPT Based Model Predictive Control of Grid Connected Inverter for PV Systems. 8th International Conference on Renewable Energy Research and Applications, 3-6.
  • Ghani, P., Chiane, A. A. and Kojabadi, H. M., 2010. An adaptive hysteresis band current controller for inverter base DG with reactive power compensation, 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC), 429-434
  • Hart, D. W., 2010.Power Electronics. New York, McGraw-Hill.
  • Huld, T., Müller, R. and Gambardella, A., 2012. A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86, 1803-1815.
  • Hussaini, M. Güngör, O., 2017. Uyarlamalı Ağ Tabanlı Bulanık Çıkarım Sistemi ve Bulanık Mantık Tabanlı MPPT Tasarımı ve Kıyaslanması. EMO Bilimsel Dergi, 7(14), 13-20.
  • Isen, E. and Kochan, O., 2021. Energy Management For Pv/Battery Standalone Photovoltaic System. Journal of Engineering Sciences and Design, 9(2), 414-424.
  • Kececioglu, O. F., Gani, A. and Sekkeli, M., 2020. Design and Hardware Implementation Based on Hybrid Structure for MPPT of PV System Using an Interval Type-2 TSK Fuzzy Logic Controller. Energies, 13(7), 1842.
  • Kumar, S. Kumar, R. and Singh, N., Performance of closed loop SEPIC converter with DC-DC converter for solar energy system. 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES), 1-6.
  • Kumar, S., Singh, N., Yadav, S. and Tiwari, P., 2018. Evaluation & Analysis of MPPT Controller for PV Systems. International Conference on Computing, Power and Communication Technologies, 1161-1165.
  • Libo, W., Zhengming, Z. and Jianzheng, L., 2007. A Single-Stage Three-Phase Grid-Connected Photovoltaic System With Modified MPPT Method and Reactive Power Compensation. IEEE Transactions on Energy Conversion, 22(4), 881-886.
  • Messalti, S., Harrag, A. and Loukriz, A., 2017. A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation. Renewable and Sustainable Energy Reviews, 68(1), 221-233.
  • Prasad, B., Reddy, R. G. R., Sonami, S. K. and Harika, P., 2017. A Fuzzy Logic based MPPT Method for Solar Power Generation. International Conference on Intelligent Computing and Control Systems.
  • Psarros, G. N., Batzelis, E. I. and Papathanassiou, S. A., 2015. Partial Shading Analysis of Multistring PV Arrays and Derivation of Simplified MPP Expressions. IEEE Transactions on Sustainable Energy, 6(2), 499-508.
  • Phap V. M., Yamamura N., Ishida, M. Hirai J., Yubai, K. and Nga, N. T., 2017. Modeling and Experimental Test of Grid-Tied Photovoltaic Cell Emulating System in the Stand-alone Mode. J. Electrical Systems, 13(2), 387-397
  • Putri, R. I., Wibowo, S. and Rifa, M., 2015. Maximum power point tracking for photovoltaic using incremental conductance method. Energy Procedia, 68, 22-30.
  • Rekik, M., Abdelkafi, A. and Krichen, L., 2015. Synchronization of Wind Farm Power System to Utility Grid under Voltage and Frequency Variations. International Journal Of Renewable Energy Research, 5(1).Trends in Renewable Energy IRENA data
  • Trenberth, K. E. and Fussulo, J. T., 2009. Global warming due to increasing absorbed solar radiation. Geophysical Resarch Letters, 36.
  • Qun, L. L., Xin, W. Z., 2008. A Rapid MPPT Algorithm Based on the Research of Solar Cell’s Diode Factor and Reverse Saturation Current. WSEAS Transations on Systems, 7(5).