CT Taramalarında Hastanın kilosuna göre alınan dozun değişimi

Tüm radyoterapi işlemi sırasında çekilen Bilgisayarlı Tomografi (BT) görüntüleri, tedavi portalı tasarımı, planlaması ve hasta pozisyonunun sağlanması için önemlidir. Ancak bu BT taramalarında hastanın aldığı doz, planlama doz hesaplamalarına dahil edilmez. Özellikle adaptif tedavilerde kritik organların limit dozlarının hesaplanmasında günlük BT taramalarından alınan doz çok önemli hale gelmektedir. Bu çalışmada, Monte Carlo tekniğinin kullanıldığı NCICT kodu ile hastaların bazı kritik organları olan kalp ve karaciğerin aldığı dozun hastanın ağırlığına göre değişimi araştırıldı.
Anahtar Kelimeler:

CT, Phantom, NCICT, Monte Carlo

Variation of the Absorbed Dose by the Weight of the Patient in CT Scanning

Computed Tomography (CT) images taken during whole radiotherapy procedure is important for treatment planning, portal design and providing patient position. However, the dose received by the patient in these CT scans are not included in the planning dose calculations. Especially in adaptive treatments, the dose received from daily CT scan becomes very important in calculation of the limit doses of critical organs. In this study, with the NCICT code, which use the Monte Carlo technique, the change of the dose absorbed by some critical organs of the patients, namely the heart and liver, according to the weight of the patient, was investigated.

___

  • 1. AAPM, 2011. Size-specific dose estimates (ssde) in pediatric and adult body ct examinations, AAPM Report 204, 1-30.
  • 2. Lee, C., Kim, K.P., Bolch, W.E., Moroz, B.E. and Folio, L., 2015. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans, J Radiol Prot, 35, 4, 891-909.
  • 3. National Research Council, 2006. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2, Washington DC, National Academies Press.
  • 4. Lee, C., Kim, K.P., Long, D. and Bolch, W.E., 2012. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation, Med Phys, 39, 2129–46.
  • 5. Lee, C., Kim, K.P., Long, D., Fisher, R., Tien, C., Simon, S.L., Bouville, A. and Bolch, W.E., 2011. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations, Med Phys, 38, 1196–206.
  • 6. Lee, E., Lamart, S., Little, M.P. and Lee, C., 2014. Database of normalised computed tomography dose index for retrospective CT dosimetry, J Radiol Protect, 34, 363–88.
  • 7. Reiser, M.F., Takahashi, M., Modic, M. and Becker, C.R., 2004. Multislice CT, ed. Reiser, M.F., et al., Berlin, Springer. Sechopoulos, I., Trianni, A. and Peck, D., 2015. The DICOM radiation dose structured report: what it is and what it is not, J Am Coll Radiol, 12, 712–3.
  • 8. Turner, A.C., Zankl, M., DeMarco, J.J., Cagnon, C.H., Zhang, D., Angel, E., Cody, D.D., Stevens, D.M., McCollough, C.H. and McNitt-Gray, M.F., 2010. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners, Med Phys, 37, 1816.