V-Bant Düz Dalga Kılavuzlarının Üç Boyutlu Yazıcı ile Üretimi ve İletkenliklerinin İncelenmesi

Bu çalışmada, ticari olarak temin edilebilen standart dikdörtgen dalga kılavuzları (DDK) üç boyutlu (3B) yazıcı kullanılarak üretilmiştir. Bu üretim, diğer literatürden yer alan çalışmalarından farklı olarak V bantta kullanılmak üzere gerçekleştirilmiş ve iletkenliği incelenmiştir. Geleneksel yöntemlerle üretilen milimetre (mm) dalga uygulama ekipmanlarının artan fiyat ve teslim süresi, bu tür ürünlerin mümkün olduğunca kolay ve ucuz üretilmesi ihtiyacını doğurmuştur. Dalga kılavuzları (DK) elektromanyetik dalgaları belirli bir frekans aralığında istenilen bir yönde bir noktadan diğer bir noktaya taşımak için kullanılan pasif elemanlardır. TE10 modunda DDK SolidWorks programı kullanılarak tasarlanmış ve daha sonra eriyik yığma modelleme yöntemi ile PLA termoplastiği kullanılarak üretilmiştir. DK’ların iç yüzeyi kaplandıktan sonra performansı oluşturulan mm-dalga sistemi üzerinde test edilmiştir. Milimetre dalga sisteminde bileşenlerin performansı olarak zayıflama kaybı (S21) ölçülmüştür ve sonuç olarak DDK’ların 1 dB’den daha az zayıflama kaybı olduğu görülmektedir. Bu çalışmada mm-dalga uygulama bileşenlerinin 3B yazıcı ve iletken gümüş boya kullanarak daha ucuz ve hızlı bir şekilde üretilebildiği ortaya konulmuştur.

Production of V-Band Straight Waveguides with Three-Dimensional Printer and Examining of Their Conductivity

In this work standart rectangular straight waveguides which were obtained commercially are manufactured using three dimensional (3D) printer. Unlike other literature studies, this production was carried out for using in V-band and its conductivity was examined. Increasing cost and delivery time of the traditionally manufactured milimeter (mm) wave application components lead to the requirement of producing this type of products as easy and cheap as possible. Waveguides are passive components that are used to carry the magnetic wave from one point to another point in the desired direction in a certain frequency range. For TE10 mode, rectangular waveguides have been designed with the SolidWorks program and then manufactured using PLA thermoplastics with the fused deposition modelling method. After the inner surfaces of the waveguides are completely covered with silver conductive paint, their performances are tested on the mm wave testpad. The performance of components on the mm-wave system has been measured by obtaining attenuation loss (S21) and as a result, it is seen that straight rectangular waveguides have an attenuation loss of less than 1 dB. It is demonstrated that mm wave application components can be produced with 3D printer cheaper and faster and examined of the conductivities.

___

  • Balzer, J. C., Weidenbach, M., Busch, S. F., Koch, M., 2016. 3D printed waveguides for 120 GHz. 2016 German Microwave Conference (GeMiC), 2016, Bochum, 1-3.
  • Geterud, E. G., Bergmark, P., Yang, J., 2013. Lightweight waveguide and antenna components using plating on plastics. 2013 7th European Conference on Antennas and Propagation (EuCAP), 2013, Gothenburg, 1812-1815.
  • Kartal, F., 2018. Yapım zamanı için erimiş birikim modelleme işlem parametrelerinin optimizasyonu. International Journal Of 3D Printing Technologies And Digital Industry, 2:1(2018), 96-103.
  • Chan, K. Y., Ramer, R., Sorrentino, R., 2018. Low-Cost Ku-Band Waveguide Devices Using 3-D Printing and Liquid Metal Filling. IEEE Transactions on Microwave Theory and Techniques, 3993-4001.
  • Itagaki, K., Doi, M., Hara, T., and Lee, S., 2019. 3D Printed Waffle Type Waveguide for Millimeter Wave Application. 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1-2.
  • Sorocki, J., Koryciak, S., Piekarz, I. Gruszczynski S. and Wincza K., 2017. Investigation on additive manufacturing with conductive PLA filament for realisation of low-loss suspended microstrip microwave circuits. 2017 International Conference on Electrical, Electronics and System Engineering (ICEESE), 2017, Kanazawa. 48-51.
  • Promarin, K. and Somwang, P., 2019. Thermal Behavior of FDM 3D Printing by Using Arduino Mega 2560 Approach. 16th International Conference on Electrical Engineering Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Pattaya, Chonburi, Thailand, 767-770.
  • Karakoç, M. C., Şahin, A. B., 2020. Development of 15-dB Gain Conical Horn Antenna Using 3D Printing Technology. Electica, July 2020, 20(2), 177-181.
  • Zhang, B., Zirath, H. 2016. Metallic 3-D printed rectangular waveguides for millimeter-wave applications. IEEE Trans. Compon. Packag. Manuf. Technol 2016, 6 (5), 796-804.
  • Genc, A., Göksu, T., Helhel, S., 2019. 3D baskı ve bakır kaplama ile üretilen dalga kılavuzu dönüş elemanlarının performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2019, 34(2), 801-810.
  • Genç, A., Göksu T., Doğan H., Başyiğit, I., Helhel S., 2019. Fabrication of Low-weight Broadband 90° Waveguide Twist at X-Ku Band with 3D Printing Technology. Proceedings of 10th International Symposium on Intelligent Manufacturing and Service Systems, 971-978.
  • Genc, A.G., Tuna, H., Selcuk., 2018. Fabrication of 3D Printed Rectangular Waveguide T-Junction With in-Phase And Equal Power Division. Microwave and Optical Technology Letters, 2018, vol(60), 2043-2048.
  • Mach, P., Cinert, J., 2011. Conductive mechanisms in electrical conductive adhesives with isotropical electrical conductivity. 2011 IEEE 17th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, 103-106.
  • Kirley, M. P., Carlsson, N. B., Yang B., Booske, J. H., 2012. Study of the effect of surface roughness and skin depth on the conductivity of metals at 650 GHz. IVEC 2012, Monterey, CA, 239-240.
  • Pozar, D. M., 2005. Microwave engineering. Third Edition. John Wiley & Sons.