Shielding Property of Closed-Cell AlSi7 Foams and AlSi7 Bulk Materials against Gamma Rays

Bu çalışmanın amacı kapalı gözenekli AlSi7 köpükler ile AlSi7 bulk malzemelerin gama ışınlarına karşı zırhlama özelliklerinin deneysel olarak karşılaştırılmasıdır. Bu malzemeler toz metalurjisi yöntemi ile üretilmiştir. Gama ışınları zayıflatma ölçümleri 88, 511, 662, 1173, 1275 ve 1332.5 keV foton enerjilerinde gerçekleştirilmiştir. Elde edilen sonuçlar AlSi7 bulk malzemelerin kapalı gözenekli AlSi7 köpüklere kıyasla daha iyi gama ışını zayıflatma yeterliliğine sahip olduğunu göstermektedir. Bunun nedeni ise bulk malzemelerin köpüklere kıyasla daha yüksek yoğunluğa sahip olmalarıdır.

Kapalı Gözenekli AlSi7 Köpükler ve AlSi7 Bulk Malzemelerin Gama Işınlarına Karşı Zırhlama Özelliği

The aim of this paper is experimental comparison of shielding properties against gamma rays among closed-cell AlSi7 foams and bulk materials. These materials were produced by powder metallurgy method. Gamma rays attenuation measurements were performed at photon energies of 88, 511, 662, 1173, 1275 and 1332.5 keV. The obtained results revealed that AlSi7 bulk materials offer better gamma rays attenuation capabilities due to their high density compared to closed-cell AlSi7 foams.

___

  • Aguirre-Perales, L. Y., Jung, I. H. and Drew, R. A., 2012. Foaming behavior of powder metallurgical Al-Sn foams. Acta Materialia, 60, 759-769.
  • Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G. and Gibson, L. J., 2000. Metal Foams: A Design Guide: A Design Guide. Elsevier.
  • Banhart, J., 2001. Manufacture, characterisation and application foams. Progress in materials science, 46, 559-632.
  • Baumeister, J. and Schrader, H., 1992. U.S. Patent No. 5,151,246. Washington, DC: U.S. Patent and Trademark Office.
  • Chen, S., Bourham, M. and Rabiei, A., 2014. Novel light- weight materials for shielding gamma ray. Radiation physics and chemistry, 96, 27-37.
  • Corner, A., Venables, D., Spence, A., Poortinga, W., Demski, C. and Pidgeon, N., 2011. Nuclear power, climate change and energy security: exploring British public attitudes. Energy Policy, 39, 4823-4833.
  • Degischer, H. P. and Kriszt, B., 2002. Handbook of cellular metals. Weinheim: Wiley-vch.
  • Foldiak, G., 1986. Industrial application of radioisotopes. 1st ed. Elsevier Science Ltd, Amsterdam, Netherland.
  • Gedik, S. and Baytaş, A. F., 2015. Shielding of Gamma Radiation by Using Porous Materials. Acta Physica Polonica, A., 128.
  • Grossbeck M.L., 2012. Effect of radiation on strength and ductility of metals and alloys, Comprehensive Nuclear Materials, 1, 99-122.
  • Hangai, Y., Saito, K., Utsunomiya, T., Kuwazuru, O. and Yoshikawa, N., 2014. Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys. Materials Science and Engineering: A, 613, 163-170.
  • Hobbs, L. W., Clinard, F. W., Zinkle, S. J. and Ewing, R. C., 1994. Radiation effects in ceramics. Journal of Nuclear Materials, 216, 291-321.
  • Katoh, Y., Snead, L. L., Szlufarska, I. and Weber, W. J., 2012. Radiation effects in SiC for nuclear structural applications. Current Opinion in Solid State and Materials Science, 16, 143-152.
  • Khabushan, J. K., Bonabi, S. B., Aghbagh, F. M. and Khabushan, A. K., 2014. A study of fabricating and compressive properties of cellular Al-Si (355.0) foam using TiH2. Materials and Design, 55, 792-797.
  • Kitazono, K., Kitajima, A., Sato, E., Matsushita, J. and Kuribayashi, K., 2002. Solid-state diffusion bonding of closed-cell aluminum foams. Materials Science and Engineering: A, 327, 128-132.
  • Knoll, G. F., 2010. Radiation detection and measurement. John Wiley & Sons
  • L'Annunziata, M. F., 2007. Radioactivity: introduction and history. Elsevier.
  • Lefebvre, L. P., Banhart, J. and Dunand, D., 2008. Porous metals and metallic foams: current status and recent developments. Advanced Engineering Materials, 10, 775-787.
  • Ma, L. and Song, Z., 1998. Cellular structure control of aluminium foams during foaming process of aluminium melt. Scripta Materialia, 39, 1523-1528.
  • Mavi, B., Gurbuz, F., Ciftci, H. and Akkurt, I., 2014. Shielding property of natural biomass against gamma rays. International journal of phytoremediation, 16, 247-256.
  • Shiomi, M., Imagama, S., Osakada, K. and Matsumoto, R., 2010. Fabrication of aluminium foams from powder by hot extrusion and foaming. Journal of Materials Processing Technology, 210, 1203-1208.
  • Uzun, A. and Turker, M., 2015. The investigation of mechanical properties of B4C-reinforced AlSi7 foams. International Journal of Materials Research, 106, 970-977.
  • Watson, J. and Scott, A., 2009. New nuclear power in the UK: A strategy for energy security?. Energy Policy, 37, 5094-5104.
  • Xu, S., Bourham, M. and Rabiei, A., 2010. A novel ultra- light structure for radiation shielding. Materials and Design, 31, 2140-2146.