Poli (Vinil klorür)/$Fe_3O_4$ Manyetik Nanopartikül Kompozitlerinin Sentezi,Termal ve Elektriksel Özelliklerinin İncelenmesi

Çalışmada manyetik $Fe_3O_4$ nanopartikülleri birlikte çöktürme yöntemiyle sentezlendi. Sentezlenen nanopartiküllerin TEM ve partikül boyutlandırıcı ile boyutlarının 20 nm civarında olduğu ve XRD ile de yapılarının küre şeklinde olduğu belirlendi. VSM ile elde edilen manyetizasyon eğrisinden doygunluk manyetizasyon değeri ($M_s$) 53.28 emu/g olarak bulundu. Ardından Poli(vinil klorür) ile farklı yüzdelerde manyetik nanopartikül kullanılarak kompozitler hazırlandı. Hazırlanan kompozitlerin karekterizasyonu FT-IR spektrofotometresi ile yapıldı. TGA ve DSC ile termal analizleri yapıldı ve nanopartiküllerle hazırlanan kompozitlerde $T_g$ değerlerinin saf PVC’ den daha yüksek olduğu görüldü. Elektriksel ölçüm sonuçlarından, MNP ilavesinin dielektrik sabitini düşürdüğü görüldü. Ayrıca AC iletkenliğinin artan frekansla artış göstermesine rağmen kompozitlerin iletkenliğinin saf PVC’ den daha düşük olduğu belirlenmiştir.

Synthesis, Investigation of Thermal and Electrical Properties Poly(Vinyl chloride)/$Fe_3O_4$ Magnetic Nanoparticle Composites

In this study, magnetic $Fe_3O_4$ nanoparticles were synthesized by co-precipitation. It was determinedthat the dimensions of the synthesized nanoparticles with TEM and Particle Sizer were around 20 nmand their structures were spherical by XRD. Saturation magnetization value (Ms) from the magnetizatoncurve obtained by VSM was found as 53.28 emu/g. Then, composites were prepared using Poly (vinylchloride) with different percentages of magnetic nanoparticles. The PVC/magnetic $Fe_3O_4$ nanoparticleswere characterized by FT-IR spectrophotometer. Thermal analyzes were carried out by DSC and TGA,and $T_g$ values of composites were found to be higher than pure PVC. From the electrical measurementresults, it was observed that the addition of MNP reduced the dielectric constant. Additionally, althoughAC conductivity increases with increasing frequency, it is determined that the conductivity ofcomposites is lower than pure PVC.

___

  • Ahmad, Z., 2012, Polymer dielectric materials, M.A.Silaghi, Intech, 3-26.
  • Balazs, A.C., Emrick, T. and Russell, T.P., 2006. Nanoparticle polymer composites: where two small worlds meet. Science, 314(5802), 1107- 1110.
  • Bayramoğlu, G. and Eşiyok, S., 2017. PolistirenFosfin Oksit Modifiye Kil Nanokompozitleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(2), 440-448.
  • Byrne, M.T. and Gun'ko, Y.K., 2010. Recent advances in research on carbon nanotube–polymer composites. Advanced materials, 22(15), 1672- 1688.
  • Chen, C., Wesson, R., Collier, J. and Lo, Y., 1995. Studies of rigid poly (vinyl chloride)(PVC) compounds. I. Morphological characteristics of poly (vinyl chloride)/chlorinated polyethylene (PVC/CPE) blends. Journal of applied polymer science, 58(7), 1087-1091.
  • Chiscan, O., Dumitru, I., Postolache, P., Tura, V. and Stancu, A., 2012. Electrospun PVC/$Fe_3O_4$ composite nanofibers for microwave absorption applications. Materials Letters, 68, 251- 254.
  • Endo, K., 2002. Synthesis and structure of poly (vinyl chloride). Progress in Polymer science, 27(10), 2021-2054.
  • Harun, H., Pekdemir, M.E. and Coşkun, M., 2019. A study on aminated PVC/oxidized MWCNT composites. Academia Journal of Scientific Research, 7(2), 086-094.
  • Haruna, H., Pekdemir, M.E., Tukur, A. and Coşkun, M., 2020. Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, 139, 3887-3895.
  • Khan, A., Aldwayyan, A.S., Alhoshan, M. and Alsalhi, M., 2010. Synthesis by in situ chemical oxidative polymerization and characterization of polyaniline/iron oxide nanoparticle composite. Polymer international, 59(12), 1690-1694.
  • Klarić, I., Vrandečić, N.S. and Roje, U., 2000. Effect of poly (vinyl chloride)/chlorinated polyethylene blend composition on thermal stability. Journal of applied polymer science, 78(1), 166-172.
  • Li, P., Miser, D.E., Rabiei, S., Yadav, R.T. and Hajaligol, M.R., 2003. The removal of carbon monoxide by iron oxide nanoparticles. Applied Catalysis B: Environmental, 43(2), 151-162.
  • Moniruzzaman, M. and Winey, K.I., 2006. Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194-5205.
  • Pekdemir, M.E. and Coşkun, M., 2020. Chemical Bonding of $Fe_3O_4$ Nanoparticles on the Surface of Poly (acryloyl chloride) Functionalized Multiwalled Carbon Nanotubes. Iranian Journal of Science and Technology, Transactions A: Science, 44(4), 1001-1010.
  • Pekdemir, M.E., Ertürkan, D., Külah, H., Boyacı, İ.H., Özgen, C. and Tamer, U., 2012. Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS). Analyst, 137(20), 4834-4840.
  • Reddy, K.R., Lee, K.P., Lee, Y. and Gopalan, A.I., 2008. Facile synthesis of conducting polymer– metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Materials Letters, 62(12), 1815-1818.
  • Reddy, K.R., Lee, K.P. and Gopalan, A.I., 2007. Novel electrically conductive and ferromagnetic composites of poly (aniline-coaminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. Journal of applied polymer science, 106(2), 1181-1191.
  • Shafi, K.V., Ulman, A., Yan, X., Yang, N.-L., Estournes, C., White, H. and Rafailovich, M., 2001. Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir, 17(16), 5093-5097.
  • Sun, C., Lee, J.S. and Zhang, M., 2008. Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 60(11), 1252- 1265.
  • Sun, S., Murray, C.B., Weller, D., Folks, L. and Moser, A., 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. science, 287(5460), 1989-1992.
  • Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X. and Li, G., 2004. Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. Journal of the American Chemical Society, 126(1), 273-279.
  • Tavman, İ. and Turgut, A., 2006. Mikro ve nano boyutlu tanecik katkılı polimer kompozitlerin mekanik özellikleri. Proceedings of 11th International Materials Symposium, Denizli, Türkiye, 570-575.
  • Teng, X. and Yang, H., 2004. Effects of surfactants and synthetic conditions on the sizes and selfassembly of monodisperse iron oxide nanoparticles. Journal of Materials Chemistry, 14(4), 774-779.
  • Thio, Y., Argon, A., Cohen, R. and Weinberg, M., 2002. Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 43(13), 3661- 3674.
  • Thostenson, E.T., Ren, Z. and Chou, T.W., 2001. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology, 61(13), 1899-1912.
  • Tukur, A., Pekdemir, M.E., Haruna, H. and Coşkun, M., 2020. Magnetic nanoparticle bonding to PVC with the help of click reaction: characterization, thermal and electrical investigation. Journal of Polymer Research, 27, 161.
  • Wilson, J., Poddar, P., Frey, N., Srikanth, H., Mohomed, K., Harmon, J. and Wachsmuth, J., 2004. Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. Journal of Applied Physics, 95(3), 1439-1443.
  • Woo, K., Hong, J., Choi, S., Lee, H.-W., Ahn, J.-P., Kim, C.S. and Lee, S.W., 2004. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of materials, 16(14), 2814-2818.
  • Xie, X.L., Liu, Q.X., Li, R.K.Y., Zhou, X.P., Zhang, Q.X., Yu, Z.-Z. and Mai, Y.-W., 2004. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer, 45(19), 6665-6673.